RESEARCH ARTICLE

Single nucleotide polymorphism (SNP) in the *doublesex (dsx)* gene splice sites and relevance for its alternative splicing in the malaria vector *Anopheles gambiae* [version 1; peer review: awaiting peer review]

Oswald Djihinto1, Helga D.M. Saizonou1, Luc S. Djogbenou1-3

1Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, 01BP526 Cotonou, Benin
2Institut Régional de Santé Publique, University of Abomey-Calavi, Ouidah, BP 384 Ouidah, Benin
3Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Abstract

Background: The malaria burden continues to be significant in tropical regions, and conventional vector control methods are faced with challenges such as insecticide resistance. To overcome these challenges, additional vector control interventions are vital and include modern genetic approaches as well as classical methods like the sterile insect technique (SIT). In the major human malaria vector *Anopholes gambiae*, a candidate gene favourable for sterility induction is the *doublesex (dsx)* gene, encoding somatic sexually dimorphic traits in mosquitoes. However, the mechanism that regulates the expression of this gene in anopheline mosquitoes is poorly understood. This study aimed to screen the *An. gambiae dsx* gene splice site sequences for single nucleotide polymorphisms (SNPs) that could be critical to its alternative splicing.

Methods: Variant annotation data from Ag1000G project phase 2 was analysed, in order to identify splice-relevant SNPs within acceptor and donor splice sites of the *An. gambiae dsx* gene (*Agdsx*).

Results: SNPs were found in both donor and acceptor sites of the *Agdsx*. No splice-relevant SNPs were identified in the female-specific intron 4 acceptor site and the corresponding region in males. Two SNPs (rs48712947, rs48712962) were found in the female-specific donor site of exon 5. They were not specific to either males or females as the rs48712947 was found in female mosquitoes from Cameroon, and in both males and females from Burkina Faso. In the other splice sites, the intron 3 acceptor site carried the greatest abundance of SNPs.

Conclusions: There were no gender association between the identified SNPs and the random distribution of these SNPs in mosquito populations. The SNPs in *Agdsx* splice sites are not critical.
for the alternative splicing. Other molecular mechanisms should be considered and investigated.

Keywords
SNP, alternative splicing, dsx gene, Anopheles gambiae, malaria
List of abbreviations

Agdsx: Anopheles gambiae doublesex gene
dsx: doublesex gene
ESE: Exonic Splicing Enhancers
ESI: Exonic Splicing Silencers
hnRNPs: heterogeneous nuclear ribonucleoproteins
ISE: Intronic Splicing Enhancers
ISI: Intronic Splicing Silencers
PTMs: post-translational modifications
SIT: Sterile Insect Techniques
SNP: Single Nucleotide Polymorphism
Sxl: Sex lethal gene
TRA: Transformer transcription factor
TRA2: Transformer 2 transcription factor

Introduction

Malaria is a vector-borne infectious disease caused by the protozoan parasite belonging to the *Plasmodium* genus. The transmission occurs among humans through the bite of the female *Anopheles* mosquito. This disease is among the top ten causes of death in low-income countries (World Health Organization) and continues to take a heavy toll on communities, especially in African regions. The malaria transmission cycle involves four major elements: the host (human), the parasite, the vector and the environment. In the absence of effective vaccine or sustainable treatment options, vector control is the cornerstone of malaria management and is based on the prevention of human-host contact and reduction in vector population density. The traditional vector control strategies rely on long-lasting insecticidal net (LLIN) distribution and indoor residual sprays (IRS) which have contributed to the decreasing malaria cases and mortality. However, vector resistance against the existing insecticides is increasing in natural mosquito populations.

In the last decade, scientific advances in additional tools for vector control have included technologies such as cytoplasmic incompatibility with the use of *Wolbachia* infection; repressible dominant lethal systems in *Aedes aegypti*; Y-chromosome shredding gene drive; and the genetic sterilisation of *Anopheles* sp., known as Sterile Insect Techniques (SIT). The latter technique, SIT, is based on the repeated, high-density release of radio-sterilized males, through gamma radiation, into the environment in order to compete with wild males for mating with the native female anopheline mosquitoes, hindering the production of offspring. Indeed, mated females will not produce viable offspring, resulting in reduced population numbers or even elimination of the target species. However, instead of exposing males to a source of radiation, sterility could be induced by genetic modification of the mosquito genome and may improve the effectiveness of classical SIT-based approaches.

In *An. gambiae*, one of the major malaria vectors, population suppression strategies are already under investigation by targeting the sex determination genes such as the *doublesex (dsx)* transcription factor gene. Therefore, the *Anopheles gambiae* doublesex gene (*Agdsx*) represents a useful candidate gene for genetic manipulation and improvement of the alternative mosquito control technologies. Interest in this gene comes from the fact that it undergoes alternative splicing and results in female and male-specific transcripts necessary for sex determination in this species. The use of transgenic tools in anopheline mosquitoes through targeting the *dsx* gene could improve the sterility induction and genetic sexing which are major requirements for SIT technologies. However, the molecular mechanisms underlying gender determination are highly variable. Though it was demonstrated that *Yob1* gene (Y-linked) is one of the determining factors of the male sex in,* the molecular pathways controlling the signal of somatic sexual commitment (*dsx* splicing and regulation) in *An. gambiae* are not well understood. The only well-known model of the *dsx* splicing comes from the fly *Drosophila melanogaster* sex determination pathway. The *dsx* gene acts as a transcription factor targeting several genes which have mostly sex- and tissue-specific functions in fly. Transformer (TRA) and Transformer 2 (TRA2) are the key regulatory factors of the female-specific alternative splicing of *dsx* pre-mRNA (*dsxF isoform*) while the absence of *TRA* leads to the male-specific splicing (*dsxM isoform*). Both TRA and TRA2 are downstream targets of the Sex lethal gene (*Sxl*) product. Unfortunately, *An. gambiae* dsx gene (*Agdsx*) has a different structure suggesting that Agdsx sex-specific splicing event is caused by a mechanism different from that of the *D. melanogaster* dsx.

The exon definition by the spliceosome requires interplays between splice sites on either side of the exon. Donor sites (5’-splice site) are defined by GT dinucleotide at the 5’ end of exon-intron border, while AG dinucleotide defined acceptor sites (3’-splice site) at the 3’ end of intron-exon border. In mammalian cells, the presence of genetic variations such as single nucleotide polymorphisms (SNPs) within the donor and acceptor splice sites is susceptible to influence the splicing and might lead to changes in normal splicing pattern. The presence of SNP at the acceptor splice site of several genes is reported in human and lead to the alternative splicing of the corresponding genes. Indeed, in humans, splicing signals are a common point of mutations. Most of the splicing mutations analysed so far directly influence the conventional consensus splicing sequence, and consequently lead to skipping of the adjacent exon. Furthermore, coding single-nucleotide polymorphisms (cSNPs) are thought to have the same effect on splicing. Moreover in animals, especially in cattle, the *ectodysplasin 1* gene (*ED1*) produces two isoforms that result from alternative splicing. It was reported that this alternative splicing event in *ED1* mRNA is caused by a point mutation found in the 5’ splice donor site of intron 8. Gargani *et al.*, have also showed that another single nucleotide polymorphism (SNP) in the exonic splicing enhancer (ESEs) of the exon 8 in *ED1* mRNA leads to the exon skipping in cattle.

Taking together these observations in humans and animal models, we hypothesized that the same events could be possible in insects and that SNPs could occur in acceptor and/or donor splice sites in mosquitoes that might...
result in the splice variation. The current report seeks then to screen \textit{Anopheles gambiae} doublesex gene (\textit{Agdsx}) splice site sequences for single-nucleotide polymorphisms (SNPs) that could be associated with alternative splicing.

\textbf{Methods}

\textbf{Sequence data and mosquito samples}

Genomic sequences used in this study came from the \textit{Anopheles} 1000 genomes (Ag1000G) project phase 2 released in 201721. The SNP annotation was downloaded (ag1000g.phase2.ar1.variants.pass.2R.vcf.gz, November 11, 2019) from the Malaria Genomic Epidemiology Network (MalariaGEN) website. This file contain all SNPs identified in mosquito whole genomes and that pass the variant filtering process described by 21. Only \textit{Anopheles gambiae} samples were considered in our study. These mosquito samples were collected from natural populations from 2002 to 2012 in eight African countries (Table 1). The reference sequence of \textit{Agdsx} (AGAP004050) was also downloaded from Vectorbase website.

\begin{table}
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\textbf{Country} & \textbf{Site} & \textbf{Year} & \textbf{Geographic coordinate} & \textbf{Number of species} \\
 & & & \textbf{Latitude} & \textbf{Longitude} \\
\hline
Burkina Faso & Bana & 2012 & 11.2330 & -4.4720 & 20 \\
 & Pala & 2012 & 11.1500 & -4.2350 & 46 \\
 & Souroukoudinga & 2012 & 11.2350 & -4.5350 & 26 \\
\hline
Cameroon & Daiguene & 2009 & 4.7770 & 13.8440 & 96 \\
 & Gado Badzere & 2009 & 5.7470 & 14.4420 & 73 \\
 & Mayos & 2009 & 4.3410 & 13.5580 & 105 \\
 & Zembe Borongo & 2009 & 5.7470 & 14.4420 & 23 \\
\hline
Equatorial Guinea & Bioko & 2002 & 3.7000 & 8.7000 & 9 \\
\hline
France (Mayotte) & Bouyouni & 2011 & -12.7378 & 45.1417 & 1 \\
 & Combani & 2011 & -12.7787 & 45.1429 & 5 \\
 & Karihani Lake & 2011 & -12.7965 & 45.1217 & 3 \\
 & Mont Benara & 2011 & -12.8570 & 45.1552 & 2 \\
 & Mtsamboro Forest Reserve & 2011 & -12.7027 & 45.0811 & 1 \\
 & Mtsanga Charifou & 2011 & -12.9907 & 45.1557 & 8 \\
 & Sada & 2011 & -12.8521 & 45.1039 & 4 \\
\hline
Gabon & Libreville & 2000 & 0.3840 & 9.4550 & 69 \\
\hline
Ghana & Madina & 2012 & 5.6685 & -0.2193 & 12 \\
\hline
 & Koundara & 2012 & 8.5000 & -9.4170 & 18 \\
\hline
Uganda & Tororo (Nagongera) & 2012 & 0.7700 & 34.0260 & 112 \\
\hline
\end{tabular}
\caption{Sampling locations of \textit{An. gambiae} mosquitoes from the Ag1000G phase 2 project.}
\end{table}

\textbf{Sequence analysis and SNP identification}

From the \textit{Agdsx} reference sequence, the list of genomic positions of donor and acceptor sites was extracted. VCFtools version 0.1.15 (https://vcftools.github.io/index.html)28 was used to extract the SNPs within the genomic region corresponding to the \textit{Agdsx} sequence from the SNPs annotation file. The polymorphic nucleotides were then identified within the splice sequences, in comparison to the reference sequence. SNPs were then visualized using TASSEL version 5.2.63 software29. The genomic position of the acceptor sites was used to select SNPs in the last 12 nucleotides of an intron preceding the 3' splice pattern NYAG and in the first six nucleotides of an exon. In donor splice sites, SNPs were identified within the last six nucleotides of an exon and the first 16 nucleotides in an intron. The SNPs association to the sex phenotype (male or female) was evaluated by running the association analysis using the general linear model (GLM) function in TASSEL. The average nucleotide diversity at the \textit{dsx} locus between male and female was calculated using \textit{scikit-allel} version 1.2.130 in order to determine whether
SNPs density at the *dsx* locus differed between the two sexes.

Results

Identification of *An. gambiae dsx* gene (Agdsx) donor and acceptor splice sites sequence

Agdsx is located in the 17C band of the chromosome 2R (2R: 48703664 - 48788460) on the reverse strand. The gene is 84.8 kb long and encodes the male and female-specific transcript. The male transcript (6975bp) is shorter than that of female (8667bp). The difference between the two sex-specific transcripts is due to the alternative splicing of exon 5. The latter is a cassette exon, which is retained in female and skipped in male transcript. The whole sequence of the female-specific exon 5 is included in the male intron 4 region and is spliced out. This gene structure causes a shift in intron/exon number in male. Thus, although male and female share the same exon/intron or intron/exon boundaries, they have common and specific splice sites.

Male and female mosquitoes share exon 1, 2, 3, 4 and 6 donor splice sites while exon 5 donor site is specific to female as it is only recognized by the spliceosome in females (Table 2). Similarly, both sexes share intron 1, 2, 3, and 6 acceptor sites. Male intron 4 and female intron 5 share the same 3' end as the female, and exon 5 is included in the male intron 4 sequence. However, females have the intron 4 specific acceptor site, as the cassette exon 5 definition is not established in males (Table 2).

SNPs in female-specific intron 4 acceptor and exon 5 donor splice sites

Along the *Agdsx* gene, 17,196 polymorphic sites were identified. Wherever both male and female mosquitoes are present (in Burkina Faso, Cameroon and Mayotte), the nucleotide diversity is similar between both sexes (Figure 1). This was expected as male and female in each country make up a single population. In addition, no difference in the nucleotide diversity was observed between male populations from the

Table 2. Splice donor and acceptor sites within the double sex (*dsx*) gene of *Anopheles gambiae*

<table>
<thead>
<tr>
<th>Splice donor sites</th>
<th>Sex</th>
<th>Exon</th>
<th>Size</th>
<th>Exon position</th>
<th>Splice site sequence</th>
<th>Site position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start</td>
<td>End</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>1</td>
<td>1415</td>
<td>48788460</td>
<td>48787046</td>
<td>tatttg/gtaagtaaatatgcaa</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>2</td>
<td>1445</td>
<td>48785629</td>
<td>48784185</td>
<td>TGGGAG/gtaagtacgatcatgc</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>3</td>
<td>45</td>
<td>48747737</td>
<td>48747693</td>
<td>TACCTG/gtaagtaaatataatt</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>4</td>
<td>135</td>
<td>48715295</td>
<td>48715161</td>
<td>ACGAAG/gtaagtggcgatgat</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>5</td>
<td>1692</td>
<td>48714648</td>
<td>48712957</td>
<td>cagaag/gtatggtaagacggcc</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>6</td>
<td>1267</td>
<td>48712794</td>
<td>48711528</td>
<td>aaaaag/gtaagtgtggttagta</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>7</td>
<td>2668</td>
<td>48706331</td>
<td>48703664</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Splice acceptor sites</th>
<th>Sex</th>
<th>Intron</th>
<th>Size</th>
<th>Intron position</th>
<th>Splice site sequence</th>
<th>Site position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start</td>
<td>End</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>1</td>
<td>1416</td>
<td>48787045</td>
<td>48785630</td>
<td>gtacgtttgattgcag/atctcc</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>2</td>
<td>36447</td>
<td>48784184</td>
<td>48747738</td>
<td>tgcctttcttttctag/CTACTC</td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>3</td>
<td>32397</td>
<td>48747692</td>
<td>48715296</td>
<td>ttccgccccgtttcag/ACGACG</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>4</td>
<td>512</td>
<td>48715160</td>
<td>48714649</td>
<td>ttatgatttaaacag/GTCAAG</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>4</td>
<td>2366</td>
<td>48715160</td>
<td>48712795</td>
<td>tgtaacccccaaaaag/gtaaac</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>5</td>
<td>162</td>
<td>48712956</td>
<td>48712795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male/Female</td>
<td>6</td>
<td>5196</td>
<td>48711527</td>
<td>48706332</td>
<td>cgctttctcaaatatag/atcgat</td>
</tr>
</tbody>
</table>

Splice site sequences are given in 5'→3' direction on the reverse strand. Exonic coding sequences are shown in uppercase letters, and non-coding regions are in lowercase letters. The 12 bp preceding the 3’ splice-acceptor site (NYag) is indicated, where Y = T or C and N = any nucleotide.
three countries (Burkina Faso, Cameroon and Mayotte) (Figure 1, top panel). The same trend was observed between female populations as well (Burkina Faso, Cameroon, Mayotte, Gabon, Ghana, Guinea, Equatorial Guinea and Uganda).

The potential splice-relevant SNPs that could trigger the female-specific exon 5 skipping should be in the intron 4 acceptor and exon 5 donor sites. However, there was no SNP in the acceptor sequence of female-specific intron 4 nor in the corresponding male region (Figure 2). However in the female-specific exon 5 donor site, two SNPs (rs48712947, rs48712962) were found. Nevertheless, they were not specific to females as the rs48712947 was found in Cameroon female mosquitoes and in both males and females from Burkina Faso (Figure 3). The rs48712962 was absent in the male mosquito population, while it was found only in females in Cameroon.

The minor allele frequencies (MAF) of both SNPs identified were very low in each population. The MAF of rs48712947 and rs48712962 amounted to less than 1% in each female population, and only 2% of Burkina Faso male carried the rs48712947. Moreover, none of these SNPs were associated with the sex phenotype (rs48712947: p = 0.32; rs48712962: p = 0.68).

SNPs in other splice sites of Agdsx
The other splice sites were also examined for identification of gender-specific SNPs. No SNP was found in the shared exon 1 donor, introns 1. No splice-relevant SNP was found in the other donor (Figure 4A, Figure 5, and Figure 6B) and acceptor (Figure 4B, and Figure 6A) splice sites. The highest number of SNPs (7) was found in the common intron 3 acceptor site sequence (rs48715291, rs48715294, rs48715302, rs48715306, rs48715307, rs48715308, rs48715309) (Figure 7). However, each of these SNPs occurred in a non-specific manner in both male and female populations, with variable minor allele frequencies.

Discussion
The An. gambiae doublesex (Agdsx) gene is a candidate gene of interest for SIT, as a candidate for genetic modifications. The translation and the success of using dsx in SIT methodology require a clearer understanding of the genetic bases of the sex determination pathway. This study screened the Agdsx donor and acceptor splice sites for identification of splice-relevant SNPs.

According to the D. melanogaster model, the alternative splicing of Agdsx gene is governed by exon 5 skipping in male mosquitoes suggesting a silencing mechanism of the female-specific splice sites recognition (intron 4 acceptor and exon 5 donor sites) by the splicing machinery in males. Such silencing mechanism could be due to changes in splice site sequence. However, female-specific intron 4 acceptor site sequence is present within male intron 4 and no SNP was found in this sequence in both sexes. The SNPs rs48712947 and rs48712962 identified in female-specific exon 5 donor site were neither splice-relevant nor gender-specific. They appeared only in two mosquito populations (Burkina Faso and Cameroon) over the eight populations considered. In each

Figure 1. Nucleotide diversity (\(\pi\)) at Agdsx locus within mosquito populations. BF: Burkina Faso; CM: Cameroon; FR: Mayotte; GA: Gabon; CH: Ghana; GN: Guinea; GQ: Equatorial Guinea; UG: Uganda. No differences in nucleotide diversity were observed within male or female mosquito populations.
Figure 2. Female-specific intron 4/exon 5 junction and the corresponding region in male. Intron 4 splice acceptor sequence is indicated in female with the genomic positions of each nucleotide. Female-specific exon 5 is included in male intron 4 sequence. The corresponding region of the female intron 4 acceptor site is indicated within male intron 4. Exonic coding sequences are shown in uppercase letters, and non-coding regions are in lowercase letters. No SNP was neither found in the female intron 4 splice acceptor site or in the corresponding region in male.

Figure 3. SNP within female specific exon 5 donor splice site and the corresponding region in male. The coloured and dark blue squares denote respectively the presence or absence of SNP. Each row represents male (M) or female (F) mosquito population. At the bottom, the numbers are the genomic positions of each nucleotide. The major and minor allele (where applicable) are indicated for each nucleotide position. The key colour is scaled to the minor allele frequency. The black box and the black line respectively depict an exonic and intronic regions covered by the splice site in females. The corresponding region of this female donor splice site within male intron 4 was analysed. SNPs were found at very low frequencies at position 48,712,947 in Burkina Faso and Cameroon female and Burkina Faso male populations. SNP at 48,712,962 was found only in Cameroon female population. No sex-specific SNP was identified.

Population where these SNPs have been identified, they appeared in very few individuals, less than 1% in females and no more than 2% in males. These observations suggest that the Agdsx cassette exon 5 was not associated with changes in splice site patterns due to the presence of SNPs. The presence of SNPs in the other splice sites had also...
A) SNPs within exon 2 donor splice site between male and female *An. gambiae* mosquitoes. Each row represents male (M) or female (F) mosquito population. At the bottom, the numbers are the genomic positions of each nucleotide. The major and minor allele (where applicable) are indicated for each nucleotide position. The key colour is scaled to the minor allele frequency. The black box and the black line respectively depict an exonic and intronic regions covered by the splice site in females. The uppercase and lowercase letters denote respectively coding and non-coding region.

B) SNPs within intron 2 acceptor splice site between male and female *An. gambiae* mosquitoes. The uppercase and lowercase letters denote respectively coding and non-coding region.

different distribution and were non-specific to the gender of the mosquitoes.

Another factor for exon skipping is the pyrimidine content of the polypyrimidine tract in acceptor splice sequence. Indeed a poor polypyrimidine tract causes a shift of the splicing machinery to the next acceptor site, leading to the skipping as the case of exon 4 skipping in male *Drosophila*14. In *Anopheles gambiae* the number of pyrimidine (8) in the 12bp preceding the acceptor site pattern (acag) (Table 2) in the female-specific intron 4 is the same in the male corresponding region. The same number of pyrimidines in this acceptor sequence was reported by Scali et al.16. Furthermore, the authors found that this number did not differ from the consensus number of pyrimidines (8.69) in *An. gambiae* splice acceptor sites, and concluded that the intron 4 site may not be a weak acceptor site16. The *Drosophila dax* splicing regulation involves the products of *transformer (Tra)* and *transformer 2 (Tra2)* genes18. Although ortholog of *Drosophila Tra2* is present in *An. gambiae* (accession number: AGAP006798), no ortholog of *Tra* was found in *An. gambiae* genome (*FlyBase*). This suggests that *Tra* may be missing in *An. gambiae* or its splicing regulatory function could be ensured by another gene. Overall, these findings add further evidence that other
Figure 5. Single nucleotide polymorphism within exon 3 and exon 4 splice sites. A) SNPs within exon 3 donor splice site between male and female *An. gambiae* mosquitoes. Each row represents male (M) or female (F) mosquito population. At the bottom, the numbers are the genomic positions of each nucleotide. The major and minor allele (where applicable) are indicated for each nucleotide position. The key colour is scaled to the minor allele frequency. The black box and the black line respectively depict an exonic and intronic regions covered by the splice site in females. The uppercase and lowercase letters denote respectively coding and non-coding region. B) SNPs within exon 4 donor splice site between male and female *An. gambiae* mosquitoes. The uppercase and lowercase letters denote respectively coding and non-coding region.

mechanisms underlie the alternative splicing in *An. gambiae* and open perspective for further investigations on the molecular mechanisms of *Agdsx* splicing.

It was known that the regulation of alternative splicing evolved trans-acting splicing factors, such as serine-arginine-rich (SR) family proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) that bind to the auxiliary silencer and enhancer cis-element (ESE: exonic splicing enhancers; ESI: exonic splicing silencers; ISE: intronic splicing enhancers; ISI: intronic splicing silencers)\(^{31-33}\). Similar regulatory cis-elements were found in *Drosophila melanogaster* female-specific exon and putative homologs were identified in *An. gambiae* female-specific exon 5\(^{16}\). Therefore, further molecular analysis are needed toward characterizing these regulatory sequences and their binding trans-factors in order to underpin the somatic sex determination in *An. gambiae*.

Moreover, the epigenetic system was also reported to regulate the alternative splicing in mammalian and other insects cells. Indeed, it was demonstrated that changes in DNA cytosine methylation on the gene body in honey bees may lead to alternative splicing\(^{34-36}\). Also histone post-translational modifications (PTMs) such as lysine acetylation and methylation were associated to the alternative splicing event\(^{37-39}\). Consequently, similar mechanisms could happen in the malaria vector *An. gambiae* to regulate gene alternative splicing. However, no significant DNA methylation was reported in Diptera including *An. gambiae*\(^{40,41}\). Then, the only epigenetic modifications that could be linked to the alternative splicing in this
Figure 6. Single nucleotide polymorphism in the last Agdsx acceptor and donor splice sites. A) SNPs within the common acceptor site (Intron 4/5) between male and female An. gambiae mosquitoes. The female (♀) specific exon 5 is included in the male (♂) intron 4 sequence making a shift in exon number is male. Thus, the male intron 4 and female intron 5 share the same 3' end. Similarly, the male exon 5 and female exon 6 share the same 5' end region. B) SNPs within the common donor site (Exon 5/6) between male and female An. gambiae mosquitoes. The female (♀) specific exon 5 is included in the male (♂) intron 4 sequence making a shift in exon number is male. Thus, the male exon 5 and female exon 6 share the same 3' end. Similarly, the male intron 5 and female intron 6 share the same 5' end region.

species are histone PTMs. Indeed, the methylation and acetylation of lysines 4, 9 and 29 of histone H3 were reported in An. gambiae. Then, it will be interesting to evaluate whether such histone modifications enrichment in Agdsx between male and female mosquitoes could be critical for dsx alternative splicing.

Conclusion
Sustainable vector control strategies will rely on the integrated use of chemical and biological vector control. Given the potential of the Agdsx gene for SIT, the understanding of mechanisms of it regulation could help to improve the tools engineering targeting this locus. SNPs were identified within the Agdsx and their putative association with the dsx alternative splicing was analysed. No splice-relevant SNP was found in the specific male and female splice site. The SNPs were distributed in few proportion of individuals in the populations where they were identified. With the advances in genetic biotechnology, other mechanisms remain to be explored for providing solid background on somatic sexual fate.
Figure 7. SNP within intron 3 acceptor splice site between An. gambiae male and female mosquitoes. The uppercase and lowercase letters denote respectively coding and non-coding region. The coloured and grey squares denote respectively the presence or absence of SNP. Each row represents male (M) or female (F) mosquito population. At the bottom, the numbers are the genomic positions of each nucleotide. The major and minor allele (where applicable) are indicated for each nucleotide position. The key colour is scaled to the minor allele frequency. The black box and the black line depict respectively an exonic and intronic regions covered by the splice site in each mosquito gender. No sex-specific SNP was identified.

determination in Anopheles gambiae. This will pave the way to find new biochemical and genetics target for malaria vector control.

Data availability

Figshare: Data underlying Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. https://doi.org/10.6084/m9.figshare.18589781.v1

This project contains the following underlying data:
- Dsx.f.h5. (Data used to plot nucleotide diversity in female populations)
- Dsx.f.h5. (Data used to plot nucleotide diversity in male populations)
- dsx_variant_seq_norm_F. (VCF format dataset containing SNPs in doublesex gene sequence of female mosquitoes)
- dsx_variant_seq_norm_M. (VCF format dataset containing SNPs in doublesex gene sequence of male mosquitoes)
- Female_sample_ID. (Dataset of the accession numbers of females sequences in the dsx_variant_seq_norm_F file)
- Female_sample_ID. (Dataset of the accession numbers of males sequences in the dsx_variant_seq_norm_M file).

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements

The authors are grateful to Dr. Luisa Nardini, Dr. Lizette Koekemoer and Dr David Weetman for their helpful comments on this manuscript. The authors also acknowledge Wellcome Trust for financial support to LSD.