The genetic and epigenetic profile of serum S100β in the Lothian Birth Cohort 1936 and its relationship to Alzheimer’s disease [version 1; peer review: awaiting peer review]

Danni A Gadd1*, Robert I McGeachan2*, Robert F Hillary1*, Daniel L McCartney1, Sarah E Harris3,4, Roy A Sherwood5, N Joan Abbott6, Simon R Cox3,4, Riccardo E Marioni1

1Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Other (Non-U.S.), EH4 2XU, UK
2Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Other (Non-U.S.), EH8 9JZ, UK
3Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Other (Non-U.S.), EH8 9JZ, UK
4Department of Psychology, University of Edinburgh, Edinburgh, Other (Non-U.S.), EH8 9JZ, UK
5Department of Clinical Biochemistry, King’s College Hospital NHS Foundation Trust, London, Other (Non-U.S.), SE5 9RS, UK
6Institute of Pharmaceutical Science, King’s College London, London, Other (Non-U.S.), WC2R 2LS, UK

* Equal contributors

\textbf{Abstract}

\textbf{Background:} Circulating S100 calcium-binding protein (S100β) is a marker of brain inflammation that has been associated with a range of neurological conditions. To provide insight into the molecular regulation of S100β and its potential causal associations with Alzheimer’s disease, we carried out genome- and epigenome-wide association studies (GWAS/EWAS) of serum S100β levels in older adults and performed Mendelian randomisation with Alzheimer’s disease.

\textbf{Methods:} GWAS (N=769, mean age 72.5 years, sd = 0.7) and EWAS (N=722, mean age 72.5 years, sd = 0.7) of S100β levels were performed in participants from the Lothian Birth Cohort 1936. Conditional and joint analysis (COJO) was used to identify independent loci. Expression quantitative trait locus (eQTL) analyses were performed for lead loci that had genome-wide significant associations with S100β. Bidirectional, two-sample Mendelian randomisation was used to test for causal associations between S100β and Alzheimer’s disease. Colocalisation between S100β and Alzheimer’s disease GWAS loci was also examined.

\textbf{Results:} We identified 154 SNPs from chromosome 21 that associated (P<5x10^{-8}) with S100β protein levels. The lead variant was located in the S100β gene (rs8128872, P=5.0x10^{-17}). We found evidence that two independent causal variants existed for both transcription of S100β and S100β protein levels in our eQTL analyses. No CpG sites were...
associated with S100β levels at the epigenome-wide significant level (P=3.6x10^{-8}); the lead probe was cg06833709 (P=5.8x10^{-6}), which mapped to the LGI1 gene. There was no evidence of a causal association between S100β levels and Alzheimer’s disease or vice versa and no evidence for colocalisation between S100β and Alzheimer’s disease loci.

Conclusions: These data provide insight into the molecular regulators of S100β levels. This context may aid in understanding the role of S100β in brain inflammation and neurological disease.

Keywords
Epigenetic, Genetic, S100β, Inflammation, EWAS, GWAS, Alzheimer’s disease

This article is included in the Generation Scotland gateway.
Introduction
The calcium-binding protein S100 beta (S100β) has been suggested as a biomarker for central nervous system disease.1 Expressed most commonly in astrocytes, its cytoplasmic location and calcium-binding capability allows S100β to mediate calcium homeostasis, cell proliferation and survival intracellularly, while also triggering the RAGE-associated inflammatory response when secreted extracellularly.2 Part of pro-inflammatory danger-associated molecular patterns (DAMPs), elevated S100β is linked to cytokine cascades in the brain.3

Although the exact pathophysiology is still unknown, a number of small-scale studies have reported elevated circulating or cerebrospinal fluid (CSF) S100β levels in individuals with nervous system injury, neuroinflammatory conditions, white matter ageing and Alzheimer’s dementia and delirium.4 Following traumatic brain injury, elevated S100β plasma levels have been shown to precede increases in intracranial pressure.5 Blood-based levels of S100β have also been found to be elevated in small vessel disease and associated with cognitive decline.6,7 Activated astrocytes expressing high levels of S100β have been profiled at plaques in the hippocampus, temporal lobe, frontal lobe and pons in individuals with Alzheimer’s disease.8 The S100β gene was also identified as a site of differential DNA methylation (DNAm) relating to Braak staging in a previous epigenome-wide association study (EWAS) of cortical post-mortem tissues (n=159).9

Whether S100β has a direct involvement in the pathogenesis of Alzheimer’s disease is still unclear. Further to its potential role in inflammatory exacerbation in the brain, research suggests that at nanomolar concentrations, S100β can have protective and neurotrophic effects.10 Despite the widely discussed biological importance of S100β, the possible epigenetic regulators of the protein have not been investigated. One study using blood spots taken at birth has previously identified two genetic associations in relation to circulating S100β levels; rs62224256 on chromosome 21, 21kb downstream of the pericentrin gene (PCNT) and rs28397289 on chromosome 6, within the human leukocyte antigen (HLA) region.11 Elucidating the mechanisms that determine inter-individual variation in circulating S100β levels, in healthy individuals, may therefore provide insight into S100β’s role in health and disease. Further genetic mapping of S100β may also facilitate causal association tests with disease endpoints.

Here, we perform genome- and epigenome-wide association studies (GWAS/EWAS) of S100β in relatively healthy older adults from the Lothian Birth Cohort 1936 (LBC1936). We then use genetic instruments identified for S100β to test for bidirectional causal associations with Alzheimer’s disease, via two-sample Mendelian randomisation. Demographic information for the GWAS (N=769) and EWAS (N=722) sample groups are summarised in Table 1.

Methods
The Lothian Birth Cohort 1936
The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of cognitive ageing. Cohort members were born in 1936 and took part in the Scottish Mental Survey 1947 at age 11 years. Approximately 60 years later, those individuals that were living mostly within the Edinburgh area were re-contacted (n = 1,091, recruited at mean age 70 years). Recruitment and testing of the LBC1936 cohort have been described previously.12,13 Briefly, the data collection has included detailed phenotypic, biological and cognitive sampling, over a series of follow-up waves (approximately every 3–4 years since recruitment). Body mass index (BMI) was measured at clinic visits and recorded in kg/m². The S100β data available in this study were from the second wave of testing, at around three years after the Wave 1 visit to the clinic. DNA methylation data were also collected at the same time-point as S100β sampling. Genotyping was performed on DNA from blood samples collected at Wave 1.

S100β measurement
Serum samples were obtained from participants during the main physical and cognitive testing appointment at Wave 2. After collection, samples were stored at −80 °C at the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh, until the conclusion of the wave. They were then transferred to the Department of Clinical Biochemistry, King’s College London using cold-chain logistics, where they were stored at −20 °C until assays were conducted using a chemiluminescence immunoassay S100β kit (catalogue number 314701,

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>EWAS</th>
<th></th>
<th>GWAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>Mean (sd)</td>
<td>n (%)</td>
<td>Mean (sd)</td>
</tr>
<tr>
<td>Maximum sample (n)</td>
<td>722</td>
<td>769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100β (μg/L)</td>
<td>0.086(0.035)</td>
<td>0.085 (0.034)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (Female)</td>
<td>340 (47.1)</td>
<td>367 (47.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at S100β (years)</td>
<td>72.5 (0.7)</td>
<td>72.5 (0.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>27.9 (4.3)</td>
<td>27.9 (4.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EpiSmokEr</td>
<td>0.84 (5.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
distributed by DiaSorin, Berks, UK) on a LIAISON chemiluminescence analyzer. The lag between sample dispatch at the end of sampling and assay completion (i.e., time stored at −20 °C rather than −80 °C) was an average of 44 days (SD = 26) for four batches. The minimal detectable concentration of the assay was 0.02 μg/L.

Genotyping
LBC1936 DNA samples were genotyped at the Edinburgh Clinical Research Facility using the Illumina 610-Quadv1 array (Wave 1; n = 1005; mean age: 69.6 ± 0.8 years; San Diego). Preparation and quality control steps have been reported previously. SNPs were imputed to the 1000 G reference panel (phase 1, version 3). Briefly, individuals were excluded on the basis of sex mismatches, relatedness, SNP call rate of less than 0.95, and evidence of non-European ancestry. SNPs with a call rate of greater than 0.98, minor allele frequency in excess of 0.01, and Hardy-Weinberg equilibrium test with P ≥ 0.001 were included in analyses. Only SNPs with a minor allele frequency > 0.05 and imputation quality > 0.6 were retained. The remaining 8,489,963 SNPs were filtered to remove those that had a minor allele count < 25. A total of 7,307,523 SNPs were available for GWAS analyses.

DNA methylation
DNA methylation from whole blood at Wave 2 of the Lothian Birth Cohort 1936 was measured using the Illumina 450 K methylation array at the Edinburgh Clinical Research Facility. Complete details of quality control steps taken to process the dataset have previously been described. Briefly, raw intensity data were background-corrected and normalised using internal controls. Manual inspection facilitated the removal of low quality samples presenting issues relating to bisulphite conversion, staining signal, inadequate hybridisation or nucleotide extension. Further quality control analyses were performed to exclude probes with low detection rate <95% at P < 0.01 and samples with a low call rate (<450,000 probes detected at P-values of less than 0.01) were also excluded. Finally, samples were removed if there was a poor match between genotype and incorrect DNA methylation-predicted sex, or SNP control probes. DNA methylation at Wave 2 was processed in three sets (n=256, 461 and 5, for sets 1, 2, and 3, respectively). In total, there were 459,309 CpG sites used in EWAS analyses. Lothian Birth Cohort Wave 2 DNA methylation data were used to generate an epigenetic score for smoking – known as EpiSmokEr (beta = -0.01 per unit increase in smoking, SE = 0.04, P = 0.78). For this reason, BMI was included as a covariate in all analyses.

S100β protein levels were transformed by rank-based inverse normalisation and regressed onto age, sex, BMI at Wave 2 (kg/m²) and four genetic principal components of ancestry in separate analyses groups (EWAS N=722, GWAS N=769). Standardised residuals (mean = 0, variance = 1) from these linear regression models were brought forward as the protein level variable for the respective analyses.

Data quality control and preparation was conducted in R (Version 4.0.3)33

Genome-wide association study (GWAS)
Linear regression was used to assess the effect of each of the 7,307,523 available SNPs on the levels of S100β via PLINK (Version 1.9)34. Genome-wide stepwise conditional analysis was performed through GCTA-COJO using the ‘cojo-sleet’ option to identify independent variants. Individual level genotype data were used for the reference linkage disequilibrium (LD) structure along with default settings of the software35.

Expression quantitative trait loci (eQTL) colocalisation
We cross-referenced sentinel cis pQTLs that were selected by GCTA-COJO analyses with publicly available cis eQTL data taken from the eQTLGen consortium36. The cis eQTLs were subset to the same chromosome as the cis pQTL. A 200 kb region (either upstream or downstream) was extracted from our GWAS summary statistics for S100β to capture cis effects within 100 kb of the target gene37. eQTLs for this region were then extracted from the eQTLGen consortium summary statistics for the S100β region. The shared SNPs across transcripts for S100β and S100β protein levels were then tested for colocalisation using the coloc package39 (Version 5.1.0) in R, with five hypotheses in Bayesian tests with default priors40. In addition to the null hypothesis (no causal variant), hypothesis 1 indicated a causal variant was present for S100β protein levels only. Hypothesis 2 indicated that there was a causal variant for the S100β transcript only. Hypothesis 3 indicated that there were independent causal variants for both S100β transcription and S100β protein levels. Hypothesis 4 indicated that there were two association signals that contributed to both S100β gene expression and S100β protein levels. A posterior inclusion probability (PP) > 0.95 was taken as the threshold for hypothesis testing.

Table 1 summarises demographic information for these sample populations. In the maximum sample available in GWAS and EWAS (N=722), serum S100β levels were higher in females (beta = 0.26, SE = 0.07, P = 2.2×10⁻⁴) and older individuals (correlation of 0.18 and beta = 0.16 per year, SE = 0.03, P = 2.9×10⁻⁶ in linear models) (Figure 1).

Body mass index (BMI) and smoking are common lifestyle covariates that have well-documented DNA methylation signatures19,20; we therefore tested whether these traits should be adjusted for in our analyses. S100β levels were positively associated with body mass index (BMI) (beta = 0.10 per kg/m², SE = 0.03, P = 2×10⁻³), but did not associate with the DNA methylation-based score for smoking, EpiSmokEr (beta = -0.01 per unit increase in the DNA smoking score, SE = 0.04, P = 0.78). For this reason, BMI was included as a covariate in all analyses.

Wells Open Research 2021, 6:306 Last updated: 11 NOV 2021
Mendelian randomisation and colocalisation

Two-sample, bidirectional Mendelian Randomisation (MR) was used to test for causal associations between S100β protein levels and neurological diseases. Summary statistics from a GWAS performed by Jansen et al. were used as the Alzheimer’s disease dataset (13,367,299 SNPs, with N=71,880 cases, and N=383,378 controls). All analyses were performed using the TwoSampleMR package (Version 0.5.6) in R. Clumping was used to prune SNPs for linkage disequilibrium (LD) at r² < 0.001. When testing causal associations with S100β as the exposure and Alzheimer’s disease as the outcome, only one of the 154 SNPs with P<5×10⁻⁸ (rs8128872; the sentinel variant identified by GCTA-COJO analyses in our GWAS of S100β) remained after LD pruning. The causal effect estimate for S100β to Alzheimer’s disease was therefore determined using the Wald ratio test. An F statistic for the strength of the association between the sentinel SNP and the exposure was calculated using the method: F = ((N-k-1) / k) × (r² / (1-r²)), where N = sample size, k = number of SNPs and r² = variance explained in S100β levels by the genetic instruments. The r² statistic was calculated as follows: r² = 2 × MAF × (1-MAF) × beta², where beta = effect size of the SNP and MAF = the effect allele frequency. When testing causal associations with Alzheimer’s disease as the exposure and S100β as the outcome, 42 of the 2,357 SNPs with P<5×10⁻⁸ remained after LD pruning and 29 were present in the S100β summary statistics. Multi-method Mendelian randomisation was then performed using the 29 SNPs from the Jansen et al. summary statistics using the TwoSampleMR package in R.

The coloc package (Version 5.1.0) was used to conduct colocalisation analyses for the sentinel SNP in the S100β region and the Jansen et al. summary statistics for Alzheimer’s disease GWAS. Each dataset was subset to a 200 kb section (upstream or downstream) surrounding the sentinel SNP on chromosome 21. Four hypotheses were used in Bayesian tests with default priors, as per the eQTL colocalisation tests, but for the presence of Alzheimer’s disease causal variants in the same region as S100β. A posterior inclusion probability (PP) > 0.95 was taken as the threshold for hypothesis testing.

Epigenome-wide association study (EWAS)

DNA methylation data were regressed onto age, sex, DNAm set, DNAm batch, BMI at Wave 2 (kg/m²), the DNAm-based smoking score EpiSmokEr²⁰, four genetic principal components and the measured levels of five immune cells (eosinophils, basophils, lymphocytes, neutrophils and monocytes). EWAS was conducted using OmicS-data-based complex trait analysis (OSCA)³¹. The MOMENT method was used to test for associations between S100β levels and DNAm at individual CpG sites. MOMENT is a mixed-linear-model-based method that is able to account for unobserved confounders and the correlation between distal probes that may be introduced by these

Figure 1. S100β in Wave 2 of the Lothian Birth Cohort 1936 (N=722). A, Violin plot to illustrate differences in S100β by sex. B, Scatterplot with regression line and 95% CIs for S100β by age at serum sampling with a Pearson’s correlation coefficient (r) annotated. S100β is plotted in μg/L units in all instances and age is given in years.
confounders. CpG sites were the independent variables and the dependent variable was the S100β protein residuals.

Results

Genetic profiling of S100β

The linear regression genome-wide association study identified 154 SNPs (Figure 2, full summary statistics are available in the Extended Data) on chromosome 21 that were associated with S100β levels at \(P < 5 \times 10^{-8} \) \((N=769) \). There was no evidence of genomic inflation \(\lambda = 0.99; \) Figure 3). Conditional and joint analysis (GCTA-COJO) resulted in the identification of one independent pQTL rs8128872 \(\text{(COJO beta = -0.46, SE = 0.05, } P = 3.2 \times 10^{-18}) \) associated with S100β levels. The pQTL was a cis variant (located 1,419,889 base

![Miami plot of the GWAS (upper panel; N=769) and EWAS (lower panel, N=722) of S100β. Blue lines indicate a suggestive threshold of \(P<1 \times 10^{-5} \); red lines indicate genome-wide thresholds of \(P<5 \times 10^{-8} \) (GWAS) and \(P<3.6 \times 10^{-8} \) (EWAS).](image)

Figure 2.

![QQ Plots and Genomic Inflation statistics for the GWAS (A) and EWAS (B) of S100β in the LBC1936 sample. Lambda (λ) values are annotated in each case.](image)

Figure 3.
pairs downstream of the transcription start site of the S100β gene on chromosome 21). There was strong evidence (posterior probability (PP) > 0.95) that two independent causal variants existed for both transcription of S100β and S100β protein levels in our eQTL analyses for the S100β locus (Hypothesis 3: Posterior Probability (PP) = 1.0, Hypotheses 1, 2 and 4 = 0).

Two-sample Mendelian randomisation (MR) was used to test for a causal association between S100β serum levels (using our cis GWAS data) and Alzheimer’s disease. As only one significant SNP remained after LD pruning (F = 76.67, indicating a strong effect of the instrument on the S100β expression), the causal effect estimate was determined using the Wald ratio. There was no evidence of an effect of S100β serum levels on risk of Alzheimer’s disease (P = 0.95; (Table 2). Similarly, there was no evidence to suggest that a causal relationship was present between Alzheimer’s disease and serum S100β (P > 0.05 for four of the five methods used). Colocalisation analyses provided further evidence that the loci for Alzheimer’s disease and S100β were not localised together (Hypothesis 2: Posterior Probability (PP) = 0.99, Hypothesis 3: PP = 0.01, Hypotheses 1 and 4 = 0).

Epigenetic profiling of S100β
No CpGs were significantly associated (P<3.6x10^-6) with S100β levels in the EWAS study (N=722) (Figure 2, full summary statistics are available in the Extended Data). The site with the lowest p-value (P = 5.8 × 10^-6) was cg06833709, which is located within the LGI1 region, known to encode the leucine-rich glioma inactivated 1 protein (known as epitope). There was no evidence of genomic inflation (lambda = 0.94, Figure 3).

Discussion
We have characterised the genetic and epigenetic profiles of S100β, a circulating protein that has been associated with brain inflammation and neurological disease pathology. We identified a genome-wide significant cis-pQTL (rs8128872, P=5.0x10^-10) that was associated with inter-individual variability in circulating S100β levels and found evidence that this pQTL was likely to be distinct from the eQTL for S100β transcription. Mendelian randomisation suggested no evidence of a causal association between S100β and Alzheimer’s disease or vice versa. Furthermore, there were no CpG probes that had epigenome-wide significant associations with S100β.

Whereas the study size was modest for our GWAS and EWAS, previous investigations of similar sample sizes have identified genome-wide SNP and epigenome-wide CpG correlates of protein levels35–38. These include proteomic analyses in the age homogeneous Lothian Birth Cohort 1936 sample that we use in our study34,35. Despite this, larger GWAS and EWAS efforts may help to identify additional loci, which could be used for genetic correlation and more detailed Mendelian randomisation analyses.

Our identification of a single sentinel SNP for S100β suggests that though limited, there is some evidence for genetic regulation of this protein in blood. The cis-pQTL that we identify (rs8128872) adds to the genetic profile of S100β generated in a previous GWAS analysis, which identified two SNPs in the PCNT and HLA regions35. While our EWAS suggested that there is no epigenome-wide signature of differential DNA methylation at this CpG is associated with S100β levels, the CpGs with the lowest p values in associations were situated within loci such as LGI1. The leucine-rich glioma inactivated 1 protein is encoded by LGI1, primarily locates at neuronal synapses and dysregulation of this protein due to LGI1 autoimmunity has been directly associated with limbic encephalitis36,37. Whether methylation at this CpG is associated with S100β should therefore be confirmed by replication.

The lack of evidence for a causal relationship between S100β and Alzheimer’s disease suggests either that 1) S100β levels in the blood are not directly related to the disease, or 2) any associations are more modest than this study is powered to reliably detect. Studies implicating S100β as a candidate marker for dementia are often performed in cerebrospinal fluid37,4, which may provide a closer reflection of brain pathology and comparisons between blood and CSF S100β levels may therefore yield differing conclusions. However, in the Lothian Birth Cohort 1936 sample we use in this study, serum S100β levels have cross-sectionally been associated with poorer general fractional anisotropy,4, a marker of brain ageing that is associated with increased risk of cognitive decline and dementia48.

Table 2. Mendelian Randomization summary statistics for two-sample, bidirectional tests between S100β serum levels and Alzheimer’s disease.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Method</th>
<th>N SNP</th>
<th>Odds Ratio</th>
<th>Beta</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>S100β</td>
<td>Alzheimer’s disease</td>
<td>Wald ratio</td>
<td>1</td>
<td>1.0002</td>
<td>3x10^-4</td>
<td>4.9x10^-3</td>
<td>0.95</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>S100β</td>
<td>MR Egger</td>
<td>29</td>
<td>N/A</td>
<td>-0.14</td>
<td>0.51</td>
<td>0.79</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>S100β</td>
<td>Weighted median</td>
<td>29</td>
<td>N/A</td>
<td>-0.51</td>
<td>0.51</td>
<td>0.31</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>S100β</td>
<td>Inverse variance weighted</td>
<td>29</td>
<td>N/A</td>
<td>-0.77</td>
<td>0.38</td>
<td>0.04</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>S100β</td>
<td>Simple mode</td>
<td>29</td>
<td>N/A</td>
<td>-1.07</td>
<td>0.82</td>
<td>0.20</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>S100β</td>
<td>Weighted mode</td>
<td>29</td>
<td>N/A</td>
<td>-0.53</td>
<td>0.45</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Given its role as a mediator in inflammatory cascades within the brain, it is likely that S100β serum levels may be modulated by multiple factors that could be independent of Alzheimer’s disease, or indirect from the dementia-associated pathology occurring in the brain. This may be evidenced by our lack of causal association to Alzheimer’s disease and these pathways should be explored to delineate targets for therapeutic interventions that may alter neuroinflammation through S100β mediation.

There are several limitations to our study. First, the Lothian Birth Cohort 1936 are of European ancestries, have little variation in age and selection biases may exist in this cohort, who are considered to be of higher socioeconomic class to the wider Scottish population. Therefore, these findings may not generalise to individuals of different ethnic backgrounds, age profiles or socioeconomic groups, though this also means that we are not largely reliant on statistical adjustment for these confounders. Second, our data are from relatively healthy individuals, none of whom reported a diagnosis of dementia at recruitment. It is plausible that analyses in individuals in specific diagnoses groups may yield differing findings. Finally, while the amount of information regarding brain pathology and neurological disease biology is limited when using blood measurements, many blood-based biomarkers have been found to predict and offer insight into Alzheimer’s disease. Therefore, approaches that seek to triangulate between blood, cerebrospinal fluid and brain tissues may strengthen the identification of biomarker signals in future.

Conclusion
We have established evidence for modest genetic, but not epigenetic contributions to the levels of S100β, a protein marker for brain inflammation and neurological disease. We found no evidence for a causal relationship between serum S100β and Alzheimer’s disease. Future studies should seek to corroborate these findings across blood, cerebrospinal fluid and brain tissue.

Data availability
Underlying data
Lothian Birth Cohort 1936 data are not publicly available due to them containing information that could compromise participant consent and confidentiality. Lothian Birth Cohort 1936 data are available on request from the Lothian Birth Cohort Study, University of Edinburgh.

If you are interested in working with the Lothian Birth Cohort 1936 data, you must complete a Data Request Form, indicating the variables you wish to access from the Data Dictionaries. Data Dictionaries and Data Request Forms are freely accessible at the following website: https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration. Completed forms must then be sent to Dr Simon Cox (simon.cox@ed.ac.uk) for approval.

All code is available at the following Gitlab repository: https://github.com/marioni-group/gwas-and-ewas-of-s100b.

Extended data

This project contains the following extended data files:
- s100b_EWAS_output.mlma (EWAS summary statistics for the epigenetic association study of S100β levels, for each of the 459,309 CpG probes tested)
- s100b_GWAS_output.txt (GWAS summary statistics for the genetic association study of S100β levels, including the 154 variants that had P < 5×10^-4)

These are also stored at the following Gitlab repository: https://github.com/marioni-group/gwas-and-ewas-of-s100b and will be added to the MRC GWAS and EWAS catalogues.

Reporting guidelines

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Ethical approval and consent
Ethical approval for LBC1936 was obtained from the Multi-Centre Research Ethics Committee for Scotland (MREC/01/056) and the Lothian Research Ethics Committee (LREC/1998/4/183; LREC/2003/2/29). All participants provided written informed consent and the study was performed in accordance with the Helsinki declaration.

Acknowledgements
The authors thank the participants of the Lothian Birth Cohort 1936 study for their valuable contributions to this work.

References

