Limits of lockdown: characterising essential contacts during strict physical distancing [version 1; peer review: awaiting peer review]

Amy Thomas, Leon Danon, Hannah Christensen, Kate Northstone, Daniel Smith, Emily Nixon, Adam Trickey, Gibran Hemani, Sarah Sauchelli, Adam Finn, Nicholas Timpson, Ellen Brooks-Pollock

Abstract

Background: Coronavirus disease 2019 (COVID-19) has exposed health inequalities within countries and globally. The fundamental determining factor behind an individual's risk of infection is the number of social contacts they make. In many countries, physical distancing measures have been implemented to control transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reducing social contacts to a minimum. We characterise social contacts to understand the drivers and inequalities behind differential risks for aiding in planning SARS-CoV-2 mitigation programmes.

Methods: We utilised an existing longitudinal birth cohort (n=6807) to explore social contact patterns and behaviours when strict physical distancing measures were in place during the UK's first lockdown in March-May 2020. We used an online questionnaire to capture information on participant contact patterns, health, SARS-CoV-2 exposure, behaviours and impacts resulting from COVID-19. We quantified daily contacts and examined the association between covariates and numbers of daily total contacts using a negative binomial regression model.
Results: A daily average of 3.7 [standard deviation = 10.6] total contacts outside the household were reported. Essential workers, specifically those in healthcare, had 4.5 times as many contacts as non-essential workers [incident rate ratio = 4.42 (95% CI: 3.88–5.04)], whilst essential workers in other sectors, mainly teaching and the police force had three times as many contacts [IRR = 2.84 (2.58–3.13)]. The number of individuals in a household, which largely reflects number of children, increases essential social contacts by 40%. Self-isolation effectively reduces numbers of contacts outside of the home, but not entirely.

Conclusions: Contextualising contact patterns has highlighted the health inequalities exposed by COVID-19, as well as potential sources of infection risk and transmission. Together, these findings will aid the interpretation of epidemiological data and impact the design of effective control strategies for SARS-CoV-2, such as vaccination, testing and contact tracing.

Keywords
COVID-19, SARS-CoV-2, contact patterns, ALSPAC, occupation, household structure

This article is included in the Avon Longitudinal Study of Parents and Children (ALSPAC) gateway.

This article is included in the Coronavirus (COVID-19) collection.
Corresponding authors: Amy Thomas (amyc.thomas@bristol.ac.uk), Ellen Brooks-Pollock (ellen.brooks-pollock@bristol.ac.uk)

Author roles: Thomas A: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Software, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Danon L: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Christensen H: Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Northstone K: Data Curation, Investigation, Project Administration, Resources, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Smith D: Data Curation, Formal Analysis, Investigation, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Nixon E: Formal Analysis, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Trickey A: Formal Analysis, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Sauchelli S: Writing – Review & Editing; Hemani G: Formal Analysis, Methodology, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Finn A: Writing – Original Draft Preparation, Writing – Review & Editing; Timpson N: Conceptualization, Funding Acquisition, Investigation, Methodology, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Brooks-Pollock E: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The UK Medical Research Council and Wellcome [217065/Z/19/Z] and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and ACT, LD, HC, KN, DS, EN, AT, GH, SST, AF, NT, EBP will serve as guarantors for the contents of this paper. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf); This research was specifically funded by the Wellcome Trust, Medical Research Council and University of Bristol Elizabeth Blackwell Institute for Research [102215/2/13/2]. ACT and GH are funded by the Wellcome Trust [217509/Z/19/Z, 208806/Z/17/Z]. HC and EBP would like to acknowledge support from the National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Behavioural Science and Evaluation at the University of Bristol. HC is additionally funded through an NIHR Career Development Fellowship [CDF-2018-11-ST2-015]. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. EN, LD and EBP are supported by the MRC [MR/V038613/1]. LD and EBP are also supported by the MRC [MC/PC/19067] and LD is further supported by EPSRC [EP/V051555/1] and The Alan Turing Institute under the EPSRC grant [EP/N510129/1]. NJT is a Wellcome Trust Investigator [202802/Z/16/Z], is the PI of the Avon Longitudinal Study of Parents and Children [MRC & WT 217065/Z/19/Z], is supported by the University of Bristol NIHR Biomedical Research Centre [BRC-1215-2001], the MRC Integrative Epidemiology Unit [MC_UU_00011] and works within the CRUK Integrative Cancer Epidemiology Programme [C18281/A19169]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Thomas A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Thomas A, Danon L, Christensen H et al. Limits of lockdown: characterising essential contacts during strict physical distancing [version 1; peer review: awaiting peer review] Wellcome Open Research 2021, 6:116
https://doi.org/10.12688/wellcomeopenres.16785.1

First published: 14 May 2021, 6:116 https://doi.org/10.12688/wellcomeopenres.16785.1
Introduction

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a severe respiratory disease, termed COVID-19 (coronavirus disease 2019). The virus, first reported in the Hubei province of China in December 2019, spread rapidly across the globe. SARS-CoV-2 is an airborne infectious disease transmitted between persons in close contact through respiratory droplets. Physical distancing measures have been implemented in many countries to reduce transmission, often at substantial economic and social cost. In the short-term, this has been a successful mitigation strategy, but vaccination and effective drug treatments are needed for long-term sustainable prevention of transmission and disease.

Quantifying the way that people interact, and the networks they form is important for understanding the speed and extent of infectious disease spread. Mathematical models that predict the impact of proposed interventions, often rely on data from social contact surveys to inform realistic transmission parameter choices. In turn, determining the effectiveness of many interventions also relies on accurate and timely contact pattern information. Moreover, rich participant data can help identify those who may be at increased risk of infection or identify those more likely to be involved in transmission events.

To reduce the number of social contacts, the United Kingdom (UK) government implemented strict physical distancing measures on March 23rd, 2020. Individuals were instructed to stay at home and only leave for essential work, daily exercise or purchasing of essential food/medicines. Many establishments were closed, including schools (open only to children of essential workers or those deemed vulnerable), non-essential shops, bars, restaurants, and sporting and entertainment venues. Only one published UK survey captured social contact patterns during the first COVID-19 lockdown. Consequently, we have limited understanding on how social demographics and behaviours may influence contact patterns during times of physical distancing.

To address this data gap, we rapidly deployed a COVID-19 questionnaire to participants enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC): a prospective population-based cohort study in Avon, UK which recruited pregnant women in 1990–1992. This unique three-generational study comprises of three cohorts who have been followed for the last 30 years - a wealth of biological, genetic and phenotypic data has been collected. Utilising this resource, we aimed to quantify and investigate social contact patterns in the ALSPAC cohorts during the COVID-19 epidemic, when the first physical distancing restrictions were in place.

Methods

Cohorts

ALSPAC is an intergenerational prospective birth cohort from the southwest of England. The study recruited 14,541 pregnant women with expected dates of delivery between 1st April 1991 to 31st December 1992 in the county of Avon (eligible sample). This cohort of original pregnant women, the biological fathers and other carers/partners are known as the ‘G0’ cohort. Of the pregnancies initially enrolled, 13,988 children were alive at 1 year of age. When the oldest children were approximately 7 years of age, this initial sample was bolstered with cases who would have been eligible to join the study but originally failed to. Following this additional recruitment, 14,901 children were alive at 1 year of age. This cohort of index children are known as the ‘G1’ cohort and have been followed since birth with measures obtained through clinical visits and questionnaires. The G1 cohort now includes their partners, referred to as G1 partners of offspring; the cohort of offspring of these index children are known as ‘G2’.

Ethical considerations

Completion of the questionnaire was optional and choosing to complete the questionnaire is considered informed consent for the questionnaire.

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Participation was voluntary and analyses were performed on anonymised data.

Data collection

An online questionnaire was developed to capture information on COVID-19 infection and behaviours in ALSPAC participants when physical distancing measures were first implemented in the UK, known as ‘lockdown’. The questionnaire was launched on 9th April 2020, shortly after the announcement of official lockdown in the UK on 23rd March. All participants enrolled in the ALSPAC G0 and G1 cohorts for whom we had a valid email address were invited to complete the questionnaire. Invitees were emailed a reminder two weeks after the original invite went out. The questionnaire was deployed and hosted using REDCap (Research Electronic Data CAPture tools), running for 5 weeks until 15th May 2020. Full details on the questionnaire development and deployment can be found in the Wellcome Open Research data note. The questionnaire can be found as extended data.

The questionnaire was comprised of four sections recording information on: a) general health, recent travel, COVID-19 and/or influenza-like-illness symptoms; b) self-isolation, activities and contacts; c) pandemic impact (worries and feelings); d) accommodation and household structure, keyworker and healthcare worker (HCW) status, COVID-19 awareness/knowledge. The contact section of the questionnaire was based on that details of the cohort and study design have been described previously and are available at http://www.alspac.bris.ac.uk.
We examined the association between covariates (age, sex, household size, presence of children in household, occupation, day of the week and self-isolation status) and numbers of daily contacts, selecting to use a negative binomial regression appropriate for the observed data (see extended data, supplementary Figure 2). Motivated by the high proportion of zero counts (41.5%; 2825/6807) observed, we contrasted the negative binomial regression analysis with its zero-inflated version. A lower AIC score was observed for the zero-inflated (29124) model vs the negative binomial (29263). When the predicted number of zero counts were inspected, both models performed similarly and when plotting the observed vs predicted counts, the models almost overlapped with each other (see extended data, supplementary Figure 2). The more parsimonious negative binomial model was used in further analyses. R version 4.0 was used for all analyses and the source code used can be found on Zenodo.

Results

Responses and participants

Invitations to participate were sent to 12,520 individuals. The questionnaire was completed by 6807 (54%) participants between 9th April 2020 and 14th May 2020. The bulk of responses occurred in two waves, each one week in duration: the first 7 days (3981/6807; 58.5%) and the second 10 days later (1487/6807; 21.8%). Peaks in responses coincided with the invitation and reminder emails (see extended data, supplementary Figure 1). Most contacts were reported for interactions occurring on weekdays (5016/6807; 73.7%) versus the weekend (1791/6807; 26.3%).

Participants were aged between 23 and 81 years of age and belonged to four ALSPAC participant types: G0 mothers, G0 fathers/partners, G1 offspring and G1 partners of offspring. Participants were mostly female (4895/6807; 72%) and either aged 23–29 (3039/6807; 44.7%) or 50–69 (3562/6807; 52.3%) years, reflective of the ALSPAC G1 and G0 cohorts respectively (Figure 1). Most participants were white (6040/6807; 88.7%), with only 2% non-white (137/6807). Ethnicity was unknown for 9.4% of participants (630/6807). Participant characteristics (sex and age) were dissimilar to that of southwest England and the UK. Ethnicity was broadly similar to southwest England but dissimilar to the UK (see extended data, supplementary Table 1). We assumed 70% of participants lived in the Bristol/Avon area based on addresses recorded in the ALSPAC administrative database (as of April 2020 based on the G1 cohort); 3.7% (254/6807) of participants reported living outside the UK at the time of questionnaire completion.

Associations with essential contacts

All participants recorded information on their daily contacts occurring outside of the household. At least one face-to-face or physical contact was recorded for 3944 (57.9%) and 900 (13.2%) participants respectively. No contact of either type was reported for 2825 participants (41.5%). Overall, a daily average of 3.7 [standard deviation (SD) = 10.6] total contacts outside the household were reported. The maximum number of face-to-face and physical contacts reported was 250 and 100 respectively. These contacts were reported for individuals aged between 23–29 years. Total contacts were higher on weekdays (mean = 4.0, SD = 11.4) compared to weekends (mean = 3.0, SD = 7.7). Contacts were mostly face-to-face (mean = 3.4, SD = 10.0), with many fewer involving physical touch (mean = 0.3, SD = 2.1). We observed small differences in the number...
of contacts reported for G0 and G1 cohorts: on average, G0s reported increased face-to-face, but fewer physical contacts compared to G1s (Table 1). This observation was reflective of participant age, with a greater number of daily face-to-face contacts observed for individuals aged 50–59 (mean = 3.9, SD = 10.1) compared to participants aged 23–29 (mean = 3.4, SD = 11.3). Participants aged ≥70 years reported the fewest daily contacts (mean = 2.6, SD = 3.0).

Household structures

The average household size was 2.6 persons (SD = 1.3, max = 29), with 10.6% (712/6807) of participants living alone. On average, household size was highest for the 40–49-year age group (mean = 2.43, SD = 2.0, max = 11), thereafter household size decreased as participants aged (Figure 2a). The greatest heterogeneity in the total number of daily contacts was observed for households ranging from 1 to 4 persons in size (Figure 2c) – contact numbers tended to increase as household size increased. We observed increased household sizes to coincide with cohabiting with children aged 0 to 17 years old (Figure 2b). Adults living with children, on average, had 16% higher total contacts (Table 1) compared to those not living with children. Of note, those living with children had twice the number of contacts involving touch (mean = 0.6, SD = 3.9) compared to those living without children (mean = 0.3, SD = 1.6). Of the participant ages investigated, daily contacts were higher for participants aged 30–39 who lived with children compared to those who did not (Figure 2d).

Occupation and health behaviours

We observed a clear occupational contact profile for HCW and keyworkers. Specifically, the number of face-to-face contacts and physical contacts appear positively correlated for HCWs. The majority of keyworkers had high numbers of face-to-face contacts but rarely reported physical contacts (Figure 3). There are outliers to this relationship: participants reporting a high number of face-to-face contacts only and individuals reporting a high number of physical contacts only. Mining available occupational group job titles showed nurses and medical practitioners were the largest groups of HCWs surveyed. Keyworkers were predominately teachers and school staff, with police officers identified as the fifth top group. The majority of participants not self-identifying as a HCW or keyworker (‘Other’) worked in office-based roles: administration, programming, sales, marketing and business (Table 2).

At the time of questionnaire completion, 11.1% of participants (755/6807) reported to be self-isolating, with a further 10.1% reported to have self-isolated previously (689/6807). The duration of self-isolation ranged from less than a week, up to more than 13 weeks. The majority of participants reported not to be currently self-isolating (5125/6807; 75.3%). We observed a 59% reduction in the average daily number of contacts for individuals self-isolating compared to those not (from 4.1 to 1.7) (Table 1). Some individuals preferred to not disclose their status (43/6807; 0.6%) or left the question blank (195/6807; 2.9%). Individuals who preferred to not disclose their isolation status had similar contacts to those currently self-isolating. Individuals who reported to self-isolate previously had similar numbers of contacts to those who had not self-isolated (4.0 vs 4.1).

In total, 84 participants (1.2%) had a confirmed positive COVID-19 test or were suspected to have had COVID-19 by their doctor. Of these cases, 8 were confirmed by a positive test result. The top five symptoms most frequently reported were
difficulty sleeping (20.1%), sneezing (18.3%), tiredness (14.7%), runny nose (12.8%) and sore eyes (10.2).

Regression analyses of total number of contacts
Analysis of the total number of daily contacts with a multivariable negative binomial regression model shows a striking pattern of contact frequency by occupation – peak contacts were observed for healthcare workers, followed by keyworkers, with comparatively fewer contacts among non-essential workers (Table 3). Weekdays were associated with increased contacts compared to weekends. In the univariable model (Table 1), there was a rise in the number of contacts with age, peaking at

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
<th>Mean (SD) face-to-face contacts</th>
<th>Mean (SD) physical contacts</th>
<th>Mean (SD) total contacts</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>23–29</td>
<td>3.4 (11.3)</td>
<td>0.4 (2.6)</td>
<td>3.7 (12.1)</td>
<td>3039</td>
</tr>
<tr>
<td></td>
<td>30–39</td>
<td>4.3 (15.6)</td>
<td>0.8 (3.8)</td>
<td>5.1 (17.3)</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>40–49</td>
<td>5.9 (16.7)</td>
<td>0.7 (2.7)</td>
<td>6.6 (17.7)</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>50–59</td>
<td>3.9 (10.1)</td>
<td>0.3 (1.6)</td>
<td>4.2 (10.5)</td>
<td>2107</td>
</tr>
<tr>
<td></td>
<td>60–69</td>
<td>2.7 (5.2)</td>
<td>0.2 (0.9)</td>
<td>2.9 (5.5)</td>
<td>1455</td>
</tr>
<tr>
<td></td>
<td>70+</td>
<td>2.5 (2.8)</td>
<td>0.1 (0.4)</td>
<td>2.6 (3.0)</td>
<td>71</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>3.5 (10.1)</td>
<td>0.3 (1.9)</td>
<td>3.8 (10.7)</td>
<td>4895</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>3.2 (9.6)</td>
<td>0.3 (2.5)</td>
<td>3.5 (10.3)</td>
<td>1912</td>
</tr>
<tr>
<td>Cohort</td>
<td>G0</td>
<td>3.5 (8.7)</td>
<td>0.2 (1.4)</td>
<td>3.7 (9.1)</td>
<td>3720</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>3.4 (11.3)</td>
<td>0.4 (2.6)</td>
<td>3.8 (12.2)</td>
<td>3087</td>
</tr>
<tr>
<td>Household size</td>
<td>1</td>
<td>2.7 (7.7)</td>
<td>0.1 (0.9)</td>
<td>2.8 (7.9)</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.4 (10.0)</td>
<td>0.3 (1.4)</td>
<td>3.7 (10.4)</td>
<td>3206</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.6 (10.5)</td>
<td>0.3 (1.4)</td>
<td>3.8 (10.9)</td>
<td>1554</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.8 (11.7)</td>
<td>0.6 (4.5)</td>
<td>4.4 (13.8)</td>
<td>859</td>
</tr>
<tr>
<td></td>
<td>5+</td>
<td>3.6 (6.9)</td>
<td>0.4 (1.4)</td>
<td>3.9 (7.6)</td>
<td>477</td>
</tr>
<tr>
<td>Lives with children</td>
<td>Yes</td>
<td>3.8 (12.8)</td>
<td>0.6 (3.9)</td>
<td>4.3 (14.3)</td>
<td>893</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3.4 (9.5)</td>
<td>0.3 (1.6)</td>
<td>3.6 (9.92)</td>
<td>5914</td>
</tr>
<tr>
<td>Day</td>
<td>Weekday</td>
<td>3.7 (10.9)</td>
<td>0.3 (2.1)</td>
<td>4.0 (11.4)</td>
<td>5016</td>
</tr>
<tr>
<td></td>
<td>Weekend</td>
<td>2.7 (6.8)</td>
<td>0.3 (2.0)</td>
<td>3.0 (7.7)</td>
<td>1791</td>
</tr>
<tr>
<td>Occupation</td>
<td>Health care worker</td>
<td>8.2 (14.3)</td>
<td>0.9 (4.1)</td>
<td>9.1 (16.4)</td>
<td>697</td>
</tr>
<tr>
<td></td>
<td>Keyworker</td>
<td>5.8 (16.5)</td>
<td>0.4 (2.8)</td>
<td>6.1 (17.0)</td>
<td>1603</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.8 (3.8)</td>
<td>0.2 (1.0)</td>
<td>2.0 (4.0)</td>
<td>4507</td>
</tr>
<tr>
<td>Self-isolation</td>
<td>No</td>
<td>3.8 (10.8)</td>
<td>0.3 (2.1)</td>
<td>4.1 (11.4)</td>
<td>5125</td>
</tr>
<tr>
<td></td>
<td>Previously</td>
<td>3.7 (10.2)</td>
<td>0.3 (2.5)</td>
<td>4.0 (11.2)</td>
<td>689</td>
</tr>
<tr>
<td></td>
<td>Currently</td>
<td>1.5 (2.7)</td>
<td>0.2 (0.7)</td>
<td>1.7 (2.9)</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td>Prefer not to say</td>
<td>1.6 (2.2)</td>
<td>0.4 (1.0)</td>
<td>1.9 (2.7)</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>0.3 (2.3)</td>
<td>0.005 (0.072)</td>
<td>0.3 (2.4)</td>
<td>195</td>
</tr>
</tbody>
</table>
40–49 years and declining to the lowest number of contacts reported for adults aged ≥70 years. When controlling for covariates in the multivariable model, peak contacts occurred in adults aged over ≥70 years. Contacts were increased for females in the household on mean household. Grey points represent the mean household size at each participant’s age, stratified by children in the household. Smoothened conditional mean with 95% confidence interval. (c) Box and whiskers plot of the total daily contacts by household size; the middle line (hinge) corresponds to the median, the lower and upper hinges correspond to the interquartile range, and the whiskers extend to 1.5 times the interquartile range. The width of the boxplot is proportional to the number of observations. Outliers are shown as grey points and the geometric mean as red crosses. (d) Box and whiskers plot of the total daily non-household contacts by children in the household (household composition). The number of observations contributing to each box is shown above.

Discussion

In this paper, we characterised social contact patterns during the first lockdown in the UK in 2020, as measured in the ALSPAC longitudinal cohort. Contact numbers were found to be on average less than 4 contacts per person each day, lower than pre-pandemic estimates of around 10 contacts per person\(^2,5\). Essential workers and individuals living in larger households and living with children reported higher numbers of essential social contacts than individuals without those characteristics.
This lower, non-zero, limit, associated with occupation, household size and presence of children living at home explains the observation that the measured reproduction number did not fall below 0.62.7,26

Social contact surveys have mainly been conducted as stand-alone studies by recruiting new participants5–7. Here, we surveyed an existing longitudinal cohort. This approach has several strengths. With ethics approval, consent and communications mechanisms in place it was possible to get a rapid assessment of mixing patterns. Participant engagement is high, evidenced by the high response rate. Using an existing cohort provides a more in-depth understanding of contacts and behaviours. Linkage with existing data provides the opportunity to understand social contact patterns in the context of other correlates such as occupation, household size, internet use, pet ownership, as well as subsequent follow-up to look at the long-term impact of COVID-19. Another example is the impact of COVID-19 on mental health, this has been explored in two longitudinal cohorts (ALSPAC and Generation Scotland)27. Young adults in the ALSPAC cohort were shown to experience a rise in magnitude of anxiety and reduction in well-being. The authors suggest this is possibly reflective of mitigation measures (i.e., lockdown and physical distancing) as opposed to risk of COVID-19 infection, with the latter determined as factor for higher depression and anxiety among older adults. Consequently, COVID-19 has differentially affected mental health in young and old adults, which may further be explained by contact patterns resulting from mitigation measures.

A limitation of the longitudinal cohort approach is that our survey is not demographically or geographically representative. As a birth cohort, participants were either born in 1991/1992 or they are parents of children born in those years, therefore we had few participants aged between 30 to 50 years old. Furthermore, the majority of participants are from the Bristol/Avon area and are less ethnically diverse than the UK as a whole. Given only 2% of the sample was non-white, and a further 9.4% were of unknown ethnicity, we were unable to investigate the association between ethnicity and contact patterns. However, evidence now strongly suggests that people from black, Asian, and minority ethnic (BAME) communities are disproportionately affected by COVID-19, with both racism and social determinants of health (e.g., high risk occupation,
socioeconomic status, increased burden of comorbidities) identified as causes.

We acknowledge that the presented analyses are susceptible to collider bias since they have been restricted to ALSPAC participants who volunteered to respond to the COVID-19 questionnaire. Participation in ALSPAC questionnaires by cohort participants has previously been demonstrated to be non-random; respondents are likely to be highly educated and health conscious (non-smokers). In addition, the COVID-19 questionnaire was completed online which may favour responses from those with internet access and engagement in technology.

Consequently, the associations relating to the number of contacts could be biased due to colliders on participation. Ideally one would perform these associations using inverse probability weighting in which we estimate the probability of being selected into the sample using at least the exposure and outcome variables; however, this is not possible in our data because we do not have information on numbers of contacts outside of the selected sample. Instead, we reported the representativeness of the sample by comparing variable distributions outside the sample, and we observed that questionnaire participants were more likely to be female, white and aged 23–29 and 50–69 years. Similarly, analysis of variable distributions within the sample demonstrated

Table 3. Relative number of daily total non-household contacts from univariable and multivariable negative binomial regression. CI=confidence interval.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariable</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Multivariable</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence Rate Ratio</td>
<td>95% CI</td>
<td>p</td>
<td>Incidence Rate Ratio</td>
<td>95% CI</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 23 – 29 years</td>
<td>1.00</td>
<td><0.001</td>
<td>1.00</td>
<td>0.00729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 30 – 39 years</td>
<td>1.36</td>
<td>0.84 – 2.40</td>
<td>1.02</td>
<td>0.64 – 1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 40 – 49 years</td>
<td>1.76</td>
<td>1.24 – 2.60</td>
<td>1.29</td>
<td>0.93 – 1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 50 – 59 years</td>
<td>1.12</td>
<td>1.02 – 1.24</td>
<td>1.18</td>
<td>1.07 – 1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 60 – 69 years</td>
<td>0.77</td>
<td>0.69 – 0.86</td>
<td>1.15</td>
<td>1.03 – 1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 70+ years</td>
<td>0.69</td>
<td>0.46 – 1.08</td>
<td>1.42</td>
<td>0.97 – 2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.00</td>
<td>0.0927</td>
<td>1.00</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.92</td>
<td>0.84 – 1.01</td>
<td>1.21</td>
<td>1.10 – 1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size 1</td>
<td>1.00</td>
<td><0.001</td>
<td>1.00</td>
<td>0.407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size 2</td>
<td>1.30</td>
<td>1.12 – 1.51</td>
<td>0.89</td>
<td>0.77 – 1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size 3</td>
<td>1.36</td>
<td>1.16 – 1.60</td>
<td>0.95</td>
<td>0.81 – 1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size 4</td>
<td>1.55</td>
<td>1.29 – 1.85</td>
<td>0.96</td>
<td>0.80 – 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size 5+</td>
<td>1.40</td>
<td>1.14 – 1.73</td>
<td>0.97</td>
<td>0.79 – 1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No children in house</td>
<td>1.00</td>
<td>0.00424</td>
<td>1.00</td>
<td>0.183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lives with children</td>
<td>1.20</td>
<td>1.06 – 1.36</td>
<td>1.10</td>
<td>0.96 – 1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>1.00</td>
<td><0.001</td>
<td>1.00</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekend</td>
<td>0.75</td>
<td>0.68 – 0.83</td>
<td>0.85</td>
<td>0.77 – 0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-essential worker</td>
<td>1.00</td>
<td><0.001</td>
<td>1.00</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare worker</td>
<td>4.54</td>
<td>4.00 – 5.17</td>
<td>4.42</td>
<td>3.88 – 5.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyworker</td>
<td>3.07</td>
<td>2.80 – 3.38</td>
<td>2.84</td>
<td>2.58 – 3.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not self-isolating</td>
<td>1.00</td>
<td><0.001</td>
<td>1.00</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-isolating currently</td>
<td>0.40</td>
<td>0.35 – 0.46</td>
<td>0.57</td>
<td>0.50 – 0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-isolated previously</td>
<td>0.97</td>
<td>0.85 – 1.12</td>
<td>0.92</td>
<td>0.80 – 1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>0.47</td>
<td>0.28 – 0.84</td>
<td>0.73</td>
<td>0.45 – 1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0.07</td>
<td>0.05 – 0.11</td>
<td>0.12</td>
<td>0.08 – 0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that females, particularly younger females, and individuals with higher educational level (≥ A level) were more likely to respond.16 Despite these differences in sample representation, the distribution of the number of contacts was comparable to pre-pandemic social contact surveys (right skewed, with a small fraction having the most contacts).3,34

Although we took an alternative approach to recruitment, our results are comparable to other social contact surveys. Compared to pre-pandemic surveys, we measured a significantly reduced number of social contacts per person (POLYMOD: 10.7 and BBC Pandemic 10.5).3,33,39 Our estimates are broadly consistent with other pandemic era surveys, such as CoMix, which reported an average of 2.8 contacts per person (cf. 3.7) at the height of the UK lockdown in May 2020.10 We modelled the distribution of contacts with a negative binomial model; a pre-pandemic contact survey found that a negative binomial distribution was unable to capture large groups, which are largely absent with physical distancing measures.

We observed striking occupational trends, with high numbers of contacts for healthcare workers and other keyworkers. Contacts of healthcare workers were more likely to involve touch, increasing their risk of exposure. The majority of keyworkers were identified as teachers in nursery, primary and secondary school settings, during a time of partial school closures. Interestingly, the group also included police officers. In line with contact surveys pre- and post-pandemic, essential contacts were higher for individuals living in larger households and with children.6,33 Since these variables are related, associated contacts could be explained by lockdown placing pressures on parents and carers to seek non-household support, which necessarily involves contacts.33 Finally, self-isolation was demonstrated to reduce daily contacts by 59%, suggesting that although effective in reducing contacts, some level of essential contacts outside of the household are maintained. These essential contacts may reflect financial pressures to continue work and/or caring responsibilities, necessity to obtain supplies or perceived risk of COVID-19.33

Conclusions
We have demonstrated that social contacts are significantly reduced during a period of strict physical distancing measures, although some level of essential contacts remain. Owing to the rich participant data available with a longitudinal cohort, we have characterised the drivers of essential contacts and demonstrated that occupation and household structure are strongly associated with increased number of contacts. Understanding the drivers of contact patterns during the COVID-19 pandemic is informative for designing testing and vaccination. For the latter, this will depend largely on whether a vaccine will interrupt transmission, prevent disease or both. As COVID-19 vaccines are rolled out in the UK and worldwide, priority groups are being determined. It is essential we continue to seek additional evidence to inform these campaigns for enhanced deployment.

Data availability
Underlying data
ALSPAC data access is managed through a system of open access. The steps below highlight how to apply for access to the data used in this study (accessed under the project number B3514) and all other ALSPAC data:

1. Please read the ALSPAC access policy, which describes the process of accessing the data and samples in detail, and outlines the costs associated with doing so.
2. You may also find it useful to browse our fully searchable research proposals database, which lists all research projects that have been approved since April 2011.
3. Please submit your research proposal for consideration by the ALSPAC Executive Committee. You will receive a response within 10 working days to advise you whether your proposal has been approved.

Please note that a standard COVID-19 dataset will be made available at no charge; however, costs for required paperwork and any bespoke datasets that require additional variables will apply.

Extended data
Zenodo: Supplementary Materials Limits of lockdown: characterising essential contacts during strict physical distancing. https://doi.org/10.5281/zenodo.466856621

This project contains the following extended data:
- LimitsofLockdown_Supplementary_WOFV.pdf (Supplementary materials containing Supplementary Figures 1 and 2, and Supplementary Table 1)

This project contains the following extended data:
- ALSPAC_COVID1_varlist.pdf
- ALSPAC_CovidQ1_data dictionary
- ALSPAC_symptom_algorithm_4052020.do
- ALSPAC COVID Q1 FINAL.pdf

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/amythomas/Alspac-ContactsQ1.git

Archived source code at time of publication: https://zenodo.org/badge/latestdoi/32968662924
Acknowledgements

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. We are grateful to colleagues in the University of Bristol COVID-19 Emergency Research Group (UNCOVER) and ALSPAC COVID-19 Analysis Group for discussions supporting the manuscript.

An earlier version of this article can be found on medRxiv (doi: https://doi.org/10.1101/2021.03.12.21253484)

References

20. Education Df: Guidance: Critical workers and vulnerable children who can access schools or educational settings. Reference Source

33. Ibuka Y, Okuza Y, Sugawara T, et al.: Social contacts, vaccination decisions
