OPEN LETTER

Maintaining laboratory quality assurance and safety in a pandemic: Experiences from the KEMRI-Wellcome Trust Research Programme laboratory’s COVID-19 response [version 1; peer review: 1 approved, 1 approved with reservations]

Horace Gumba1, Michael Opiyo1, Jennifer Musyoki1, Martin Mutunga1, Caroline Ngetsa1, Salim Mwarumba1, Moses Mosobo1, Susan Njuguna1, Oscar Kai1, Arnold W. Lambisia1, Domtila Kimani1, Robinson Cheruiyot1, Patience Kiyuka1, Clement Lewa1, Elijah Gicheru1, Metrine Tendwa1, Khadija Said Mohammed1, Victor Osoti1, Johnstone Makale1, Brian Tawa1, Calleb Odundo1, Wesley Cheruiyot1, Wilfred Nyamu1, Wilson Gumbi1, Jedidah Mwacharo1, Lydia Nyamako1, Edward Otieno1, David Amadi1, Nelson Ouma1, Boniface Karia1, Janet Thoya1, Angela Karani1, Daisy Mugo1, Bonface M. Gichuki1, Debra Riako1, Shadrack Mutua1, John N. Gitonga1, Kelly Omindo1, Perpetual Wanjiku1, Agnes Mutiso1, Alfred Mwanzu1, Yiakon Sein1, Brian Bartilol1, Shaban Mwangi1, Donwilliams O. Omuoyo1, John M. Morobe1, Zaydah R. de Laurent1, Fredrick Mitsanze1, Alfred Mwakubia1, Martin Rono1, Amek Nyaguara1, Benjamin Tsofa1, Philip Bejon1,2, Charles N. Agoti1, Lynette Isabella Ochola-Oyier1

1KEMRI-Wellcome Trust Research Programme, 230 Hospital Road, Kilifi, 80108, Kenya
2Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LE, UK

Abstract

Laboratory diagnosis plays a critical role in the containment of a pandemic. Strong laboratory quality management systems (QMS) are essential for laboratory diagnostic services. However, low laboratory capacities in resource-limited countries has made the maintenance of laboratory quality assurance, especially during a pandemic, a daunting task. In this paper, we describe our experience of how we went about providing diagnostic testing services for SARS-CoV-2
through laboratory reorganization, redefining of the laboratory workflow, and training and development of COVID-19 documented procedures, all while maintaining the quality assurance processes during the COVID-19 pandemic at the Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme (KWTRP) laboratory. The KWTRP laboratory managed to respond to the COVID-19 outbreak in Kenya by providing diagnostic testing for the coastal region of the country, while maintaining its research standard quality assurance processes. A COVID-19 team comprising of seven sub-teams with assigned specific responsibilities and an organizational chart with established reporting lines were developed. Additionally, a total of four training sessions were conducted for county Rapid Response Teams (RRTs) and laboratory personnel. A total of 11 documented procedures were developed to support the COVID-19 testing processes, with three for the pre-analytical phases, seven for the analytical phase, and one for the post-analytical phase. With the workflow re-organization, the development of appropriate standard operating procedures, and training, research laboratories can effectively respond to pandemic outbreaks while maintaining research standard QMS procedures.

Keywords
Quality management system, laboratory pandemic response, quality assurance, coronavirus disease, COVID-19 testing, COVID-19 pandemic

This article is included in the KEMRI | Wellcome Trust gateway.

This article is included in the Coronavirus (COVID-19) collection.
Experiences from the KEMRI-Wellcome Trust Research Programme laboratory’s COVID-19 response

How to cite this article: Gumba H, Opiyo M, Musyoki J et al. Maintaining laboratory quality assurance and safety in a pandemic: Experiences from the KEMRI-Wellcome Trust Research Programme laboratory's COVID-19 response [version 1; peer review: 1 approved, 1 approved with reservations] Wellcome Open Research 2021, 6:205 https://doi.org/10.12688/wellcomeopenres.16704.1

First published: 09 Aug 2021, 6:205

Corresponding authors: Horace Gumba (hgumba@kemri-wellcome.org), Lynette Isabella Ochola-Oyier (LiOchola@kemri-wellcome.org)

Author roles: Gumba H: Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Opiyo M: Conceptualization, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Musyoki J: Methodology, Project Administration, Supervision, Writing – Review & Editing; Mutunga M: Formal Analysis, Methodology, Writing – Review & Editing; Ngetsa C: Methodology, Supervision, Writing – Review & Editing; Mwarumba S: Methodology, Supervision; Mosobo M: Methodology, Writing – Review & Editing; Njoguna S: Methodology; Kai O: Resources, Writing – Review & Editing; Lambisia AW: Methodology, Writing – Review & Editing; Kimani D: Investigation, Methodology; Cheruiyot R: Investigation, Methodology; Kiyuka P: Investigation, Methodology; Lewa C: Investigation, Methodology; Gicheru E: Investigation, Methodology; Tendwa M: Investigation, Methodology; Said Mohammed K: Investigation, Methodology, Validation; Ootie V: Investigation, Methodology; Makale J: Investigation, Methodology; Tawa B: Investigation, Methodology; Oundo C: Investigation, Methodology; Cheruiyot W: Investigation, Methodology; Nyamu W: Investigation, Methodology; Gumbi W: Investigation, Methodology; Mwacharo J: Investigation, Methodology; Nyamako L: Investigation, Methodology; Otieno E: Formal Analysis, Investigation, Methodology, Writing – Review & Editing; Amadi D: Formal Analysis, Investigation, Methodology; Ouma N: Investigation, Methodology; Karia B: Investigation, Methodology; Thoya J: Investigation, Methodology; Karani A: Investigation, Methodology, Resources, Supervision, Writing – Review & Editing; Mwanzu A: Investigation, Methodology, Writing – Review & Editing; Wanjiku P: Data Curation, Investigation, Methodology, Mutisio A: Data Curation, Investigation, Methodology, Mwanzu A: Data Curation, Investigation, Methodology, Sein Y: Investigation, Methodology, Bortilob B: Investigation, Methodology; Mwangi S: Investigation, Methodology, Writing – Review & Editing, Omuoyo DO: Investigation, Methodology, Validation; Morobe JM: Investigation, Methodology; de Laurent ZR: Investigation, Methodology, Validation; Mitsanze F: Investigation, Methodology; Mwakubia A: Investigation, Methodology, Rono M: Investigation, Methodology, Writing – Review & Editing; Nguarua A: Investigation, Methodology; Tsofa B: Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Visualization, Writing – Review & Editing; Bejon P: Funding Acquisition, Investigation, Project Administration, Resources, Writing – Review & Editing; Agoti CN: Conceptualization, Investigation, Methodology, Resources, Supervision, Writing – Review & Editing; Ochola-Oyier LI: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust [203077,]. We are grateful to the KEMRI-Wellcome Core award [203077] funding through Dr Philip Bejon to support the ongoing COVID-19 testing. Lynette Isabella Oyier and Victor Osoti are supported by a Wellcome Trust Intermediate Fellowship awarded to Lynette Isabella Oyier [07568]. This work was supported by the African Academy of Sciences (AAS) through a DELTAS Africa Initiative grant awarded to [DEL-15-003] (awarded to Charles Agoti Nyaigoti). The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS) Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa's Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [107769] and the UK government. The views expressed in this publication are those of the authors and not necessarily those of AAS, NEPAD Agency, Wellcome Trust or the UK government. Joyce Uchi Nyiro is supported by a Program for Appropriate Technology in Health (PATH) grant (grant # GAT.1890-01665713-SUB). Kelly Omide was supported by a Broad One Health Endectocide-based Malaria Intervention in Africa (BOHEMIA) grant which is funded by International Drug Purchasing Facility (UNITAID). Jedidah Mwacharo and Perpetual Wanjiku were supported by a European and Developing Countries Clinical Trials Partnership (EDCTP) grant. We are also grateful for Dr Anthony Scott whose Pneumococcal Conjugate Vaccine Impact Study (PCVIS) grant supported Agnes Mutiso, Alfred Mwanza, Angela Karani and Shadrack Mutua. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Gumba H et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Coronavirus disease 2019 (COVID-19), was declared a pandemic by the World Health Organization (WHO) (Cucinotta & Vanelli, 2020) on 11th March 2020 following its insidious global threat. It was first reported in Wuhan, China in late December 2019 and later spread to more than 200 countries and territories by December 2020. The disease is caused by a virus from the Coronaviridae family, defined as ‘severe acute respiratory syndrome coronavirus 2’ (SARS-CoV-2) (Ceraolo & Giorgi, 2020). By the time of writing this paper (6th December 2020), COVID-19 had infected over 67.4 million people and caused over one million deaths worldwide (Dennison Himmelfarb & Baptiste, 2020). When the director-general of WHO advised various stakeholders to ‘test, test and test’ (Adhanom, 2020), it was a clear indication that laboratory involvement in testing would play a vital role in containing the COVID-19 pandemic. Laboratory testing for SARS-CoV-2, the viral agent causing COVID-19, demands that the laboratory produces accurate, reliable, and timely results. In addition, well-trained personnel and a well-established QMS are required to ensure streamlined processes during testing.

Most of the clinical and diagnostic laboratories in LMICs are underfunded and are often overwhelmed during a pandemic (Nkengasong et al., 2018). These laboratories also have feeble and weak quality management systems which if not strengthened makes laboratory diagnosis during a pandemic a daunting task. Thus, redesigning of the research laboratory’s workflow and reorganization to increase testing capacity can help provide a better platform in a pandemic response.

The KEMRI-Wellcome Trust Research Programme (KWTRP) conducts integrated clinical, laboratory, epidemiological, and health systems research. Research at the KWTRP is constantly conducted within the local health system; often with health managers and policy makers. This has led to research findings from the programme constantly feeding into local and international health policies (The RESYST/DIAHLS learning site team, 2020). The programme is organized into four scientific departments, namely biosciences, clinical, epidemiology, and health systems and research ethics departments. These are supported by the laboratories, demographic surveillance, clinical services, and stakeholder engagement platforms. The laboratory platform of the programme consists of four main state-of-the-art laboratories. These are the clinical trials laboratory (CTL), Short-Turn-around-Time laboratory (STAT), microbiology laboratory and immunology basic science research laboratory. The laboratory has full accreditation to Good Clinical Laboratory Practice (GCLP) standards, through an accreditation scheme operated by Qualogy (UK) Ltd since 2007, (Gumba et al., 2019) and it has been maintaining compliance to GCLP quality standards to date.

Since the confirmation of the first COVID-19 case in Kenya on 13th March, 2020 (MoH-Kenya, 2020) KWTRP was mandated by the Kenya government to support the COVID-19 testing for six coastal counties, namely Kilifi, Kwale, Mombasa, Taita Taveta, Tana River and Lamu. To achieve this critical government mandate, we reorganized our laboratory organization, redesigned the laboratory workflow, developed documented procedures, and conducted training for county Rapid Response Teams (RRTs) and laboratory personnel. Since the KWTRP laboratory is primarily a research laboratory in its design, and the laboratory processes and procedures are organized to facilitate research activities, the laboratory was appropriately reorganized to provide COVID-19 diagnostic testing as requested by the government. We leveraged and utilized the existing quality management systems (QMS) in order to maintain the laboratory quality assurance (QA) during the COVID-19 diagnostic testing to provide reliable, valid, accurate and timely results.

In this paper, we provide a detailed description of our experience in reorganizing a research laboratory to provide diagnostic testing, and highlight the lessons learned. The main objective of this paper is to document how to reorganize a laboratory primarily used for research, in order to provide large scale diagnostic testing during a pandemic outbreak, while also maintaining research standard quality management systems in order to provide reliable, valid, accurate and timely results.

Documenting the process

We employed a laboratory management implementation model consisting of four approaches, namely: laboratory reorganization, redesigning of laboratory workflows to accommodate diagnostic testing, training, and development of documents related to COVID-19 diagnostic testing.

Throughout these processes, detailed notes of planning meetings and implementation processes were maintained so as to facilitate both the implementation and monitoring of the processes. The meeting notes included the number of staff working
in each area, documentation of testing processes and the testing activities were reviewed during planning meetings. In addition, all the implementation outputs (testing organizational structures, workflow charts, and Standard Operating Procedures (SOPs) were produced in hard copies. These were then used in subsequent review meetings and in monitoring the implementation progress. Moreover, regular review and reflection meetings were also held to discuss the testing process implementation challenges, and, where necessary, adjustments were made to the team composition and/or roles, the laboratory workflows, and the documented procedures. Finally, a review of all the meeting notes and implementation outputs was conducted, and our findings were grouped around common themes for easy presentation.

In the section below, we outline in detail each of the four management approaches undertaken; and provide detailed account of the outcomes, and lessons learned.

Ethics statement
This work was conducted as part of the implementation project to document experiences and lessons learned, so as to continuously enhance quality improvements. Formal ethical approval was thus not needed. Institutional authorization and permission to share this experience was however sought and provided by the director-general, KEMRI.

Approach taken
In this section, we outline in detail each of the four management approaches undertaken, and provide a detailed account of the outcomes, and lessons learned. We conclude the section by highlighting some of the challenges encountered during the process.

Laboratory reorganization
Laboratories require a well-coordinated and organized structure. This helps in constant communication and facilitate clear and sometimes rapid decision-making processes during a pandemic. To achieve this, and to streamline the testing process, we established COVID-19 diagnostic testing teams with assigned clear roles and responsibilities to each (Table 1). We formed these teams by reviewing our laboratory human resource capacity, and by assessing the projected testing demands from the counties we had been assigned. Through this, we developed

<table>
<thead>
<tr>
<th>COVID-19 team</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Management team</td>
<td>- Sample reception
 - Performing sample rejection and notifying the head of department for onward communication to counties
 - Scanning of CIFs to send to the data team
 - Registering samples in the laboratory information management system and printing sample labels to assist in storage of samples at -80°C</td>
</tr>
<tr>
<td>Specimen Testing (Polymerase Chain Reaction) team</td>
<td>- Performing RNA extraction, sample processing and analysis
 - Performing QC on test runs, weekly QC and PT/EQA
 - Equipment maintenance and calibration procedures
 - Preparing sample aliquots and storing</td>
</tr>
<tr>
<td>Data Management team</td>
<td>- Data entry to the laboratory database
 - Performing QC on data entered in REDCap system.
 - Performing periodic data cleaning and communicating to the laboratory on missed samples</td>
</tr>
<tr>
<td>Health and Safety team</td>
<td>- Induction and orientation of laboratory personnel as a first interaction before involvement in COVID-19 work
 - Training of laboratory staff on the new safety precautions and procedures relating to the pandemic
 - Performing risk assessments and subsequent training on COVID-19 work
 - Coordinating infection control measures and waste management from the pandemic work
 - Carrying out regular day-to-day inspections to ensure the laboratory personnel adhere to laboratory health and safety guidelines</td>
</tr>
<tr>
<td>Laboratory Supplies team</td>
<td>- Maintaining and organizing logistical issues of supplies and maintaining stocks
 - Distributing supplies from the national government to the county RRTs.</td>
</tr>
<tr>
<td>Quality Assurance team</td>
<td>- Setting up QA process within the testing process
 - Ensuring all documented procedures and validation records are approved and determining compliance to GCLP standards through audits and assessments
 - Coordination of training on testing documented procedures.</td>
</tr>
<tr>
<td>Results Management team</td>
<td>- Compilation, review and relaying of the results
 - Coordinating repeat testing of samples where necessary</td>
</tr>
</tbody>
</table>
and produced a COVID-19 diagnostic testing organizational structure for the laboratory (Figure 1), so as to facilitate effective communication and coordination among the teams.

As shown in Figure 1, each of the seven teams had a team lead who acted as a coordinator and focal person for that particular laboratory function/section and reported to the COVID-19 diagnostic testing project manager. The reorganization of the laboratory to form a COVID-19 testing team comprising seven sub-teams also enhanced communication and the coordination of COVID-19 testing activities, which if not clearly addressed could have been a major detractor to the quality assurance system. The reorganization made it possible for us to support testing from six Kenyan coastal counties.

From our experience, the development and implementation of this organizational structure for COVID-19 diagnostic testing significantly enhanced communication and coordination among different teams and greatly facilitated clear and sometimes rapid decision-making processes. This served to promote efficiency and minimize conflict within the laboratory organization and when liaising with the various county RRTs. The day-to-day running of the COVID-19 testing and related work was coordinated by the KWTRP Biosciences Head of Department (HoD). As the work volume increased and with a strong foundation in place, daily activities were managed by the laboratory project manager with oversight from the HoD. Each team was tasked with developing documentation for their COVID-19 testing process. Furthermore, the strong laboratory QMS and dedicated QA team, who were well versed in quality assurance activities, allowed for the easy transfer of QMS into the testing process, ensuring that accurate and reliable results could be generated during the pandemic. The QA team ensured that SOPs and documentation of the testing process were performed correctly, and that the laboratory complied to the established documented procedures as well as ascribed standards.

Redesigning the laboratory workflow

We undertook process mapping (Figure 2 and Figure 3) to outline how the COVID-19 testing workflow would happen, i.e., from specimen reception to the release of results. This involved redesigning the already established research systems of SOPs, flow of samples, waste management and training to create a diagnostic environment to support the COVID-19 testing. Figure 2 and Figure 3 outline the workflows that were eventually developed following various team meetings attended by the COVID-19 steering committee.

From our experience in implementing these workflows, we found that once they were fully implemented, we had better coordination of the testing processes and better turnaround time for producing and communicating lab results to all relevant authorities. Process mapping helped to determine the available laboratory infrastructure, facilities, and personnel needed to support COVID-19 testing, while ensuring all the quality assurance activities within the testing process were not compromised. The laboratory workflow was redesigned using the Sianipar (2019) model. This involved dividing the pre-analytical phase into two categories namely: the ‘conventional’ category and the ‘pre-pre-analytical phase’. Using this model helped in identifying error prone areas within the pre-analytical phase and putting measures to minimize them. The ‘pre-pre-analytical phase’ was

![Figure 1. The organizational structure of the COVID-19 testing teams.](image-url)
primarily the responsibility of the COVID-19 county RRTs sample collection centers, while the ‘conventional’ category involved the process of centrifuging and aliquoting the samples (Figure 2) which was primarily the role of our laboratory (KWTRP). This was done to minimize the pre-analytical phase errors during the COVID-19 pandemic. In addition, an inventory assessment was made of the adequacy of all available equipment that would be required for SARS-CoV-2 testing, this included safety equipment (biological safety cabinets), sample processing equipment (centrifuges), molecular biology analyzers (real time-polymerase chain reaction (RT-PCR), QIACube HT, and QIAsymphony) and other auxiliary equipment such as pipettes and vortex.

Through mapping of the laboratory workflow, the existing systems in place for non-stock items were adapted by the laboratory and supplies team to support the SARS-CoV-2 testing process. Sample collection reagents such as viral transport media (VTM), and RT-PCR testing kits supplied by the government were managed and made available to the COVID-19 RRTs, and documentation of issue and receipt of these items was well recorded. On receipt of supplies, an inventory was taken, and a report was sent back to the supplier outlining the quantities received. Additionally, new reagent consignments were requested in advance to minimize reagent stockouts in the laboratory. The laboratory supplies team performed inventories to ensure there was no understocking or stockouts and that available supplies were distributed to all RRTs. This was an integral part of maintaining quality assurance during SARS-CoV-2 testing.

During the redesigning of the laboratory workflow, the already established Laboratory Information Management System (LIMS) was used to create a database for COVID-19 testing that linked a unique laboratory identifier number of a specimen to its storage in the laboratory’s biobank system (Figure 3). The system that was developed allowed for batch loading of samples to aid in sample reception and printing of barcode labels. Access to LIMS was password restricted. To promote a smooth laboratory and data interface, the existing systems for data entry which REDCap (Version 10.5.1) were modified and customized to support SARS-CoV-2 testing and ensure only reviewed results are authorized and released to the relevant authorities. The data team entered the information from the CIFs into the database and reviewed them to check for any errors in data entries. This was then merged with the final PCR results using the LIMS unique lab identifier to generate individual patient results reports that were shared with the county RRT.

Training
A total of four different types of training were conducted for two different staff categories (Table 2). All the four types of training were entirely focused on the personnel safety and laboratory preparedness during COVID-19 testing throughout the pandemic. The first training was conducted for county RRTs to equip them with knowledge on proper sample collection and triple packaging to safely transport samples to the laboratory. The rest of the training was performed for laboratory personnel and included risk assessments, infection control procedures, and COVID-19 testing SOPs. These training was designed to
equip both the RRTs and the laboratory personnel with knowledge of procedures and laboratory safety, including competency testing.

Conducting training that covered the COVID-19 testing process was critical to the successful maintenance of laboratory quality assurance during the COVID-19 testing. Using the existing

Figure 3. Kenya Medical Research Institute (KEMRI) COVID-19 testing flowchart showing how the laboratory teams connected to form a seamless process of testing, from the arrival of samples at the organization’s gates, to the release of the results: orange boxes, sample management team processes; blue boxes, real time-polymerase chain reaction (RT-PCR) team processes; green boxes, data management team processes. CIF - Case Investigation Form, NP/OP - nasopharyngeal/oropharyngeal.

Table 2. The list of trainings performed, the category of staff trained, and the training purpose.

<table>
<thead>
<tr>
<th>Training</th>
<th>Category of staff trained</th>
<th>Training purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample collection and transport</td>
<td>County Rapid Response Teams (RRTs)</td>
<td>- To equip the RRTs with methods of collecting the right sample.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Develop policies and procedures to guide sample collection and transport.</td>
</tr>
<tr>
<td>Risk assessment</td>
<td>Laboratory personnel, RRTs</td>
<td>- To identify risks and develop mitigation measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Risk communication protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Incident reporting</td>
</tr>
<tr>
<td>Infection control procedures</td>
<td>Laboratory personnel</td>
<td>- Waste management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Donning and doffing of Personal Protection Equipment (PPEs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Disinfection control procedures e.g. washing hands</td>
</tr>
<tr>
<td>SOP training</td>
<td>Laboratory personnel</td>
<td>- To equip the laboratory staff with knowledge regarding equipment used and COVID-19 testing procedures</td>
</tr>
</tbody>
</table>
Developing of COVID-19 testing standard operating procedures

To ensure the laboratory maintains the quality assurance within the COVID-19 testing process, we developed and documented various new SOPs; and reviewed the existing ones to support the COVID-19 diagnostic testing. The SOPs were categorized according to the three phases of the COVID-19 testing process (Table 3).

Procedure for specimen reception and rejection was developed to ensure samples of high integrity were received. The specimen rejection criteria involved checking and excluding leaking samples, duplicate samples, samples collected using the wrong swabs or swabs with no Viral Transport Media (VTM), samples without case investigation forms (CIFs) or specimen tubes with illegible labels (Figure 3). The county RRTs were informed by the project manager of samples with missing CIFs and allowed 48 hours for communication to be received on the missing CIFs. Due to the limitations in sample collection kits and the need for rapid contact tracing from the positive cases, the rejection criteria were leniently revised to accept samples with legible labels but with no CIFs, hence the 48-hour window for communication. Consequently, the existing health and safety documented procedures for specimen transport, processing, and waste management were reviewed with reference to the United States Centers for Disease Control and Prevention (CDC) and the WHO COVID-19 laboratory safety guidelines (Centers for Disease Control and Prevention, 2020; WHO, 2020a; WHO, 2020b; WHO Laboratory Biosafety Manual, 2020).

Table 3. The standard operating procedures (SOPs) developed to support COVID-19 testing.

<table>
<thead>
<tr>
<th>Testing phase</th>
<th>Standard Operating Procedures (SOPs) developed</th>
<th>SOP number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-analytical</td>
<td>Collection of nasopharyngeal and oropharyngeal samples for COVID-19 diagnosis</td>
<td>LVEC-053</td>
</tr>
<tr>
<td></td>
<td>Packaging and transportation of suspected COVID-19 biological specimens</td>
<td>LVEC-052</td>
</tr>
<tr>
<td></td>
<td>COVID-19 sample reception and acceptance procedure</td>
<td>LIMM-SSP-078</td>
</tr>
<tr>
<td>Analytical phase</td>
<td>Safe handling and processing of COVID-19 suspected samples in the laboratory</td>
<td>LVEC-054</td>
</tr>
<tr>
<td></td>
<td>RNA extraction from COVID-19 samples using Qiacybe HT analyzer</td>
<td>LVEC-055</td>
</tr>
<tr>
<td></td>
<td>Manual RNA extraction from COVID-19 samples using QIAamp viral Mini Kit</td>
<td>LVEC-056</td>
</tr>
<tr>
<td></td>
<td>RNA extraction from COVID-19 samples using Da An gene extraction Kit</td>
<td>LVEC-058</td>
</tr>
<tr>
<td></td>
<td>RNA extraction from COVID-19 samples using Qia Symphony analyzer</td>
<td>LIMM-SSP-082</td>
</tr>
<tr>
<td></td>
<td>COVID-19 Real Time PCR detection procedure</td>
<td>LVEC-057</td>
</tr>
<tr>
<td></td>
<td>Sample processing and archiving</td>
<td>LIMM-SSP-079</td>
</tr>
<tr>
<td>Post-analytical</td>
<td>Reporting and release of COVID-19 results</td>
<td>LIMM-SSP-080</td>
</tr>
</tbody>
</table>
condition and consistent in producing reliable results. Procedure for pooled testing was also developed to enable the laboratory perform testing of approximately 554 samples daily with limited resources (Agoti et al., 2021). The identified positive pools were, on the same day, expanded and run as singletos to identify the positive samples within the pools. To manage and streamline the pooling of samples during sample preparation, a working tool (Excel spreadsheet) was developed to assist in the pooled testing. This is available in Extended data, (Gumba, 2021). Sample IDs were entered into a specimen list worksheet that automatically generated several worksheets with the same specimen unique identifier. The worksheets included a PCR plate map, a worksheet that uploads the specimen list to the RT-PCR analyzer, and a worksheet for the acquisition of raw results from the analyzer to generate an interpreted output (Figure 3). The interpreted results worksheet contained formulas that incorporated the validity criteria (cycle threshold cut-off values) of all negative and positive controls, yielding ‘VALID’ in green or ‘INVALID’ in red. The results were reviewed by highly trained and competent personnel who continually monitored results against all controls and carefully defined thresholds for defining a positive or negative test result. This automated approach minimized errors and was an efficient way of handing the results over to the data team, and for handing notes to testing team the next day. Moreover, it provided a standardized tool for the pooling system and results interpretation, and at the same time it took care of the full documentation of all the specimens tested that day. The system also recorded the performance of the QCs, as is required for compliance with GCLP.

Challenges
We experienced a major challenge of long lead times between ordering and receiving of the RNA extraction kits. The unavailability of qPCR testing kits was another challenge which was due to the high demand of these kits during the pandemic. Moreover, there was limited information on validation and verification studies since most methods were still under development. Additionally, long lead times of global laboratory supplies were experienced, thus we also obtained resources independently and maximized on the available resources (Agoti et al., 2021; Said et al., 2020). Similarly, it was a big challenge of ensuring that individuals were confident in the health and safety measures that were put in place to minimize the risk of infection in the workplace.

Discussion
The reorganization of the laboratory to form the COVID-19 team with seven sub-teams was our proactive role to meet and sustain the overwhelming and urgent need for testing during the pandemic (Lippi & Mattiuzzi, 2019; Lippi et al., 2020). This allowed us to cope with the intense pressure brought about by testing hundreds of specimens a day, coupled with the large amounts of paperwork and documentation. The formation of the COVID-19 team with assigned responsibilities and the redistribution of the workload across the SARS-CoV-2 testing process enhanced the maintenance of quality assurance and enabled a high standard of testing. Through this process, personnel were empowered to confidently perform their tasks within the established COVID-19 organizational and management structure. More importantly, involvement of laboratory personnel in all aspects of the SARS-CoV-2 testing process from the onset promoted responsibility, accountability and ownership of processes and decisions made within each team.

Redesigning the laboratory workflow was a critical factor that enhanced maintenance of our laboratory QA processes during the pandemic. This was done by employing the ‘warm base’ concept which is a concept derived from the manufacturing industry and means being ready for production when a service or a product is needed (Association Public Health Laboratories, 2011). Translated to the laboratory context, it means using the already existing systems to support an outbreak. We did not set up systems from scratch for the novel SARS-CoV-2 pandemic, but we used the already established systems employed in our research and clinical trials laboratory in the laboratory where COVID-19 testing was being performed. The successful maintenance of QA and safety process during the COVID-19 testing was due to mapping of the COVID-19 testing process, conducting training, performing competency and risk assessments. Additionally, the laboratory strengths in health and safety, laboratory supplies and equipment management equally made this possible. Moreover, using the already established equipment management system, the documentation (validation records, installation records, service records and preventive maintenance records) for the identified equipment were rechecked to ensure the equipment were in good working conditions and maintenance activities were performed routinely during the SARS-CoV-2 testing process.

The laboratory also performed interlaboratory comparison for other testing laboratories within the coastal region. In this process, the testing laboratories were sending five already analyzed samples to our laboratory so that we could test and check if the results were comparable. We also enrolled in the molecular SARS-COV-2 external quality assurance (EQA) scheme provided by the Royal College of Pathology Australia (RCPA) and also participated in the proficiency testing organized by the World Health Organization and provided by the National Influenza Laboratory. All these were to ensure that the results being generated by the laboratory are valid, accurate and reliable.

Conclusions
Ensuring quality assurance in the laboratory during a pandemic and ensuring staff work safely is not a trivial process. However, capitalizing on the existing laboratory systems greatly supported the rapid set up of the COVID-19 testing, yielding reliable, accurate and timely results in a safe work environment. The involvement of key laboratory personnel, the development of documented standard operating procedures and the formation of a COVID-19 team that is organized and properly coordinated, led to the successful maintenance of laboratory quality assurance during these challenging times. The implemented steps, discussions and suggestions highlighted in this paper can be transferable to any laboratory planning to take up testing during a pandemic.
Data availability

Underlying data
No underlying data are associated with this article.

Extended data

This project contains the following extended data:

- QMS-F228 COVID-19 Blank Template (pools & singlets).xlsx (template used to key in sample IDs, generate plate maps and automatically populate results for pools and singlets).

- QMS-F228 COVID-19.Single.Blank Template.xlsx (template used to key in sample IDs, generate plate maps and automatically populate results for singlets only).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

We are thankful for the Ministry of Health Rapid Response Teams for collecting and bringing samples to our laboratory. We are also grateful for the data clerks: Patience Rehema, Frida Lewa, Nancy Kililo, Shadrack Mramba, Khamisi Katana, Sarah Baya, Claris Mapenzi, Mishi Omar, Saida Garama, Samuel Mwasambu, Noel Lughanje, Javan Nyale, Patrick Mwario and Rommy Ndaa team for their support in data entry and excellent data management, and in reporting to the national government. We are immensely grateful to the entire laboratory team for their concerted efforts in performing SARS-CoV-2 testing while maintaining the quality assurance processes. This manuscript was submitted for publication with the permission of the Director KEMRI.

References

Reference Source

Centers for Disease Control and Prevention: Coronavirus Disease 2019 Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19). Decentralized and Point of Care Testing Procedures with a High Likelihood to Generate Droplets or, 2019, 2020; 2–4. Reference Source

Said K, de Laurent ZR, Omuoyo DO, et al.: An optimisation of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams [version 1; peer review: 1 approved, 1 approved with reservations]. Wellcome Open Res. 2020; 5: 162. Publisher Full Text

The rationale for this report on how the research laboratory established Covid-19 testing is not explicitly described. The authors should be clear on what the reader should take home. Is there an outstanding feature about the approach they used? Is it the only one that could guarantee success in analytical quality and safety in Covid testing or was it the most efficient? The rationale can be improved if the authors mentioned the approaches that were available for them to explore, and gave reasons why they used this model. They could also mention whether the fact that this is a well-equipped research laboratory made it more adaptable to quickly respond to the testing needs to support public health control of the pandemic, which would support advocacy for more investments in laboratories in developing countries.

The authors have not mentioned differing views because this letter just described the activities they implemented. This area can be improved if the researchers adopted an implementation science approach providing data before and after implementation of these activities. Such an audit approach would allow the readers to interrogate the extent to which the goals of the project were realised, and determine the effectiveness of the approach used. For example, the researchers indicate that there was redesigning of the laboratory workflow and the new design is provided (Fig 2 and 3) but the old design is not shown so one cannot assess how much re-designing was actually undertaken. The outcomes of these process changes could have been discussed.

The paper can serve to guide on what are the minimum laboratory capabilities to ensure analytical quality and safety in a pandemic, and what is needed for a research laboratory to change its processes to meet the needs of a clinical service laboratory.

Is the rationale for the Open Letter provided in sufficient detail?
Partly

Does the article adequately reference differing views and opinions?
No

Are all factual statements correct, and are statements and arguments made adequately
supported by citations?
Yes

Is the Open Letter written in accessible language?
Yes

Where applicable, are recommendations and next steps explained clearly for others to follow?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical Chemistry and Laboratory Management, including quality assurance.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 19 August 2021

https://doi.org/10.21956/wellcomeopenres.18419.r45502

© 2021 Maruta T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Talkmore Maruta
Africa Centers for Disease Control, Addis Ababa, Ethiopia

1. The manuscript is well articulated.

2. The concept of "warm design" referenced in the discussion, should be introduced and described in the "Approach Taken" section.

3. Under 'Approach taken', authors can consider including the time frame needed to implement these changes and observe the reported outcomes.

4. The other major intervention was training, but this is not discussed in the "Discussion section"

Is the rationale for the Open Letter provided in sufficient detail?
Yes

Does the article adequately reference differing views and opinions?
Yes

Are all factual statements correct, and are statements and arguments made adequately supported by citations?
Yes

Is the Open Letter written in accessible language?
Yes

Where applicable, are recommendations and next steps explained clearly for others to follow?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Laboratory systems strengthening, public health, surveillance, emergency response

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.