SYSTEMATIC REVIEW

A living mapping review for COVID-19 funded research projects: three-month update [version 2; peer review: 2 approved]

Previously titled: ‘Baseline results of a living systematic review for COVID-19 funded research projects’

Alice Norton,1,2 Adrian Bucher,1 Emilia Antonio,1,3 Nicole Advani,1,3 Henrike Grund,1 Sheila Mburu,1 Emma Clegg,1 Laura Scott,1 Genevieve Boily-Larouche,4 A. Morgan Lay,5 Gail Carson,2 Marta Tufet Bayona,1

1UK Collaborative on Development Research, London, UK
2GloPID-R Secretariat, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
3Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
4Institute of Infection and Immunity, Canadian Institutes of Health Research, Hamilton, Canada
5Institute of Population and Public Health, Canadian Institutes of Health Research, Toronto, Canada

Abstract

Background: The coronavirus disease 2019 (COVID-19) has resulted in an unprecedented research response, demonstrating exceptional examples of rapid research and collaboration. There is however a need for greater coordination, with limited resources and the shifting global nature of the pandemic resulting in a proliferation of research projects underpowered and unable to achieve their aims.

Methods: The UK Collaborative on Development Research (UKCDR) and Global Research Collaboration for Infectious Disease Preparedness (GloPID-R), two funder coordination groups have collaborated to develop a live database of funded research projects across the world relating to COVID-19. Drawing data continually from their members and further global funding bodies, as of 15th October 2020 the database contains 5,084 projects, funded by 71 funders, taking place across 134 countries representing an investment of at least $1.7 billion. To our knowledge it is one of the most comprehensive databases, covering a wide breadth of research disciplines. The database is aligned to the World Health Organisation (WHO) Global Research Roadmap: 2019 Novel Coronavirus. It is being used by the WHO, governments and multi-lateral policy makers, research funders and researchers.
This living mapping review aims to supplement the database by providing an open accessible and frequently updated resource summarising the characteristics of the COVID-19 funded research portfolio. Both descriptive and thematic analysis will be presented and updated frequently to aid interpretation of the global COVID-19 funded research portfolio.

Results: In this three-month update analysis we provide an updated detailed descriptive analysis of the database and focus our thematic analysis on research gaps, research areas in need of coordination, study populations and research locations (with a focus on resource-limited countries).

Conclusions: This living mapping review will help both funders and researchers to prioritise resources to underfunded areas where there is greatest research need and facilitate further strategic collaboration.

Keywords
Living systematic review, COVID-19, Coronavirus, research funding, coordination, global health policy
Introduction
Researchers and research funders in global health have been preparing for a pandemic such as that caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for decades; however, the urgency and global scale of the research needs and response have been difficult to respond to and coordinate. Research funders have rapidly supported repurposing of existing studies and launched rapid funding calls to support research into the most pressing needs. Lessons in expediting research have been learnt from undertaking research in the recent North Kivu Ebola outbreak and West Africa Ebola, Zika and SARS epidemics, however the truly global nature of the coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented needs and challenges for coordination.

The World Health Organisation (WHO) triggered a rapid response, building on the R&D Blueprint\(^1\), and co-organised the Global Research and Innovation Forum: Towards a Research Roadmap for the 2019 Novel Coronavirus meeting with the Global Research Collaboration for Infectious Disease Preparedness (GloPID-R) on February 11–12, 2020 at which over 400 global experts identified research priorities for COVID-19. In March 2020, the WHO released the WHO Coordinated Global Research Roadmap: 2019 Novel Coronavirus (WHO Roadmap)\(^2\) to coordinate and accelerate the global research response against the identified priorities. The WHO Roadmap is an unprecedented galvanizing document for global research collaboration. This project builds on this to help shepherd the global response.

In a joint effort to further coordinate and synergise the funding of research to address the WHO Roadmap identified priority areas, the UK Collaborative on Development Research (UKCDR) partnered with GloPID-R to launch the COVID-19 Research Project Tracker\(^3\) (the tracker) on April 3, 2020. The tracker is a live database of funded research projects across the world related to the current COVID-19 pandemic. It includes both newly funded research projects and repurposed research projects across all disciplines and categorises them against the mid- to long-term research and development priorities and sub-priorities identified in the WHO Roadmap. Mapping of projects as soon as funding is announced allows visibility of the funded research portfolio well in advance of any outputs such as publications. To date, the database has been accessed over 23 thousand times and we have had active engagement (beyond data entry) with over 20 funders, the WHO (and associated COVID-19 research priority area groups) and research groups regarding its use and the living mapping review. The data is also being extracted by several other funding tracking tools (including Europe Pub Med Central).

The UKCDR Epidemics Preparedness and Response Funders Group\(^4\) and the GloPID-R Key Funders group have each been meeting frequently during the pandemic to strengthen UK and global COVID-19 research funding coordination activities respectively. Their work is informed by the data and analysis from the tracker. Several members of both organisations have recently launched calls for research on COVID-19 in low and middle-income country (LMIC) settings. There is a particular concern that due to the resource limitations in LMICs an uncoordinated approach could potentially lead to unaddressed local research needs, failure of research to inform policy or unsustainable research capacity to respond to future outbreaks. The UKCDR and GloPID-R funders groups have further strengthened their response by agreeing to a set of Funder Principles for supporting high-quality research for the most pressing global needs in epidemics and pandemics\(^5\) and with the formation of a new jointly hosted initiative for COVID-19 Research Coordination and Learning (COVID CIRCLE), encompassing the tracker and with a particular focus on resource-limited settings\(^6\).

As part of the COVID CIRCLE initiative, this living mapping review has been established to regularly update and incorporate newly funded research projects as they become available and review their alignment to the WHO Roadmap priorities. A living mapping review (LMR) is needed due to the rapidly expanding number of funded research projects and the importance of the review to inform funding decision making. Here we present the results of the three-month update of all research projects within the tracker as of 15th October 2020 and a descriptive and thematic analysis to aid interpretation of the global COVID-19 funded research portfolio. We have additionally recently published a more detailed analysis on the African continent specific baseline data from this tracker in collaboration with the African Academy of Sciences\(^7\).

Methods
Protocol for LMR
The LMR protocol outlined herein was prospectively designed. Due to the rapid need for this project to be conducted to inform research responses during the pandemic, data extraction commenced before the protocol could be formally registered with PROSPERO. The protocol is outlined in this paper.

Rationale for use of living method
Funding bodies have responded rapidly to the COVID-19 pandemic through repurposing existing grants and rapidly funding projects with both rolling and one-off funding calls. This has resulted in new research projects being funded at short intervals necessitating a living review for this work. The regular update of this review will help coordinate ongoing researcher and funder responses.
Eligibility criteria
All research projects funded by any research funder around the world (including regional funding organisations, national research funders and non-profit/philanthropic organisations), with a focus on COVID-19 were eligible for inclusion in this analysis. This includes data from all types of research activities and was not limited to just biomedical and health research. Furthermore, this analysis includes grants identified by funders as having been repurposed to address COVID-19 research priorities.

Information sources and search strategy
The database and subsequent analysis make use of data from publicly-announced COVID-19 research grants and were obtained using one of two methods. Data was either obtained through direct communication with research funders by requesting the completion of a template spreadsheet (Extended data 1). These requests were made to UKCDR and GloPID-R funder groups members on a regular basis (as part of funder coordination meetings) and to wider funder contacts beyond these groups. Alternatively, data were also obtained from online databases belonging to research funders using “COVID” and/or “coronavirus” as search terms (see Extended Data 2). The tracker remains open to the submission of new funding data relating to COVID-19 from any global funder at any time. Screening of submitted data occurs on a weekly basis.

As the database is updated, a regular review is conducted to identify duplicate entries. Where duplicates are removed from the tracker the entry with the most detailed information is retained.

Though the set of data fields varied between funders, the data fields presented in Table 1 were considered a priority for the purposes of the tracker and subsequent analyses:

Update schedule
All figures will be updated on a three-monthly basis; the discussion will also be revised to reflect any changes and trends over time. This living review will continue to be updated for the duration of the COVID CIRCLE initiative funding. The frequency of screening will not be reduced for the duration of COVID CIRCLE, although updates will only continue where new grants are included.

Manually coded data fields
Data entry of additional manually classified variables was completed by one reviewer with each variable cross-checked by a second reviewer. Abstracts in French, German, Portuguese and Spanish) were coded by project team members fluent in those languages or translated into English using Google Translate. Projects were coded against the following classifications:

1. WHO medium-long term research priorities and sub-priorities
Projects were assigned to one or more WHO priority areas of primary focus (Extended data 3). An assignment of ‘N/A’ was made where: information provided was insufficient for classification; funds were allocated for research administration; or where projects clearly fell outside the WHO broad priority areas. Subsequently, projects were assigned to appropriate WHO sub-priority area(s). The assignment of ‘N/A’ was made if insufficient information limited further sub-categorisation or the projects fell outside the WHO sub-priority areas. In addition,

Table 1. Priority data fields for the UK Collaborative on Development Research (UKCDR) and Global Research Collaboration for Infectious Disease Preparedness (GloPID-R) tracker and analysis. The latest and previous versions of this table are available as extended data.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Scientific summary of the project</td>
</tr>
<tr>
<td>Amount awarded</td>
<td>Total amount awarded by the responsible funder for the duration of the project (with currency stated)</td>
</tr>
<tr>
<td>Country(-ies) where studies are being conducted</td>
<td>All countries where research is being conducted</td>
</tr>
<tr>
<td>Funder(s)</td>
<td>The names of all funding organisations (including co-funding)</td>
</tr>
<tr>
<td>Lead institution</td>
<td>The name of the organisation that holds the grant and is leading the research</td>
</tr>
<tr>
<td>Local implementing partner(s)</td>
<td>The name of any partner institutions located in the country(-ies) where the study is being conducted</td>
</tr>
<tr>
<td>Principal investigator</td>
<td>Name of the awarded project’s lead investigator based at the lead institution (primarily used for project de-duplication)</td>
</tr>
<tr>
<td>Project ID/reference number</td>
<td>Any unique reference number / project ID assigned by the funder organisation to this project (primarily used for project de-duplication)</td>
</tr>
<tr>
<td>Project title</td>
<td>Title of the research project</td>
</tr>
<tr>
<td>Start/end date</td>
<td>Start and end dates of the project</td>
</tr>
</tbody>
</table>
suitable secondary priority area(s) with corresponding sub-priority(ies) were determined for those projects that significantly addressed other priority areas. Hence, projects were assigned with multiple primary and/or secondary WHO priority and sub-priority areas of research focus. The priority list will be updated if future iterations of the WHO Roadmap are released.

2. Emergent categories for research falling outside the WHO priority classification
For those projects that were not considered as addressing any of the WHO Research Priorities, they were assigned ‘N/A’ and new sub-priorities were developed and assigned on an initial data set of 400 projects. An inductive approach was used to develop new codes that emerged from the funded research and themes were confirmed through an iterative process through the projects in this baseline assessment. Six new sub-priority codes were defined under the social science priority (mental health; digital health; policy and economics; education; logistics and food security). A new priority focusing on the environmental impacts of COVID-19, was developed as well. All newly identified categories were validated using the full baseline dataset. In this three-month update one further new emergent category, long COVID, was identified within the clinical management priority.

3. COVID-19 Research Priorities for LMICs
Research projects involving LMICs were additionally assessed for their alignment with the research priorities identified in a collaborative study conducted by the UKCDR, African Academy of Sciences (AAS) and the Global Health Network (TGHN) in May 2020. This study, which determined globally relevant COVID-19 research priorities with a specific focus on less-resourced countries, was based on earlier work by the AAS to determine the COVID-19 research priorities for Africa and the mid- to long-term research priorities summarized in the WHO Research Roadmap. The study findings, published in August 2020, outline existing WHO research priorities which require greater research emphasis and new research priority areas not captured in the WHO Roadmap or identified in the AAS survey (Extended data 4). Each funded research project involving LMICs was assigned to one of the new categories outlined in Supplementary material 2 or noted if it fell outside both the new AAS priorities and the new priorities identified by the UKCDR/AAS/TGHN study.

4. Cross-cutting themes
During the data coding process, a number of cross-cutting themes identified by the project team were coded for analysis. For this three-month update, the following additional variables were identified (classified as yes or no): capacity strengthening; cohorts; gender; implementation; indirect health impacts; innovation; modelling; pandemic preparedness; and repurposed projects.

5. Health Research Classification System
To capture information on the type of research taking place in relation to COVID-19 with a stable classification system that is comparable to research on other health topics, the projects included in the tracker were also assessed against the research activity codes outlined by the Health Research Classification System (HRCS) – a classification system developed by UK Clinical Research Collaboration and used by health research funders around the world to classify “the full spectrum of biomedical and health research – from basic to applied – across all areas of health and disease.”. While not all of the data in the tracker have been classified against the HRCS research activity codes yet (953 of 5,084 coded), it is anticipated that all research projects will be classified appropriately with future updates to this analysis. For those projects that have already been coded against the HRCS, each project was assigned with an activity code or ‘N/A’ either when the research activity fell outside of those listed under the HRCS codes or where there was not enough project information to make an assessment.

6. Study population
A study population categorisation structure was proposed using an inductive approach on an initial data set of 400 projects and validated using the full data set, allowing the categories to be specific to the populations represented in the funded research.

For the purposes of this analysis, a hierarchical categorisation system was produced to examine the study populations of the research projects included in the tracker. At the highest levels, research projects are assessed on whether they involve animal populations, human populations, literature reviews, policy analysis or only focus on the virus itself. Research projects focused on human populations, were classified against three additional sub-categories. Table 2 outlines the categories, sub-categories and levels in full.

Synthesis of results
In light of the stated aim of the tracker (and subsequent analyses) to provide an overview of trends in funded COVID-19 research, descriptive and comparative analyses are used in this analysis to present the information included in the tracker database as of October 15th 2020.

The data used for this analysis can be obtained from the COVID-19 Research Project Tracker page on UKCDR’s website, as mentioned in the data availability statement. Data on the tracker (and subsequent analyses) will continue to be updated as more data becomes available and are obtained by the project team.

The charts and figures produced in this analysis were produced using Microsoft Office (Office 365 versions of Excel and PowerPoint) and (version 2020.2)

Limitations of the data
Among the main challenges of the analysis is the varying degrees of completeness of data across funders which led to the assignment of projects to broad priority and sub-priority areas where the qualitative details of projects provided were insufficient. Therefore, the assigned priority areas may have failed to capture all aspects of the projects relevant to the WHO Roadmap. The same can be said for any value that was assigned to a given research project by the project team, including the study population and type of research activity. The data
<table>
<thead>
<tr>
<th>Level</th>
<th>Category</th>
<th>Sub-category</th>
</tr>
</thead>
</table>
| 1 | Population | Animal population
Human population
Literature reviews
Policy
Virus
Other |
| 2 | Human sub-population | Adults
Adults- women
Adolescents
Children |
| 3a | Population group- vulnerable populations | Care home patients
Disabled
Domestic Violence Victims
Elderly
High risk individuals (defined as such in the study)
LGBTQI+ community
Minority communities (defined as such in the study)
Neonates
Pregnant women
Refugees |
| 3b | Population group- Frontline workers - Healthcare workers | Care home staff
Doctors
Informal
Nurses
Paramedics
Social care workers |
| 3c | Population group- Frontline workers - Non-healthcare | Firefighters
Sanitation
Volunteers |
| 4 | COVID-19 infection status | Negative
Negative – Recovered
Positive
Positive – Severe |

validation process by reviewers with expertise in global health research, policy, and funding outlined in the Project Selection section was used to address this and ensure that any assigned value was as accurate as possible, given the information provided.

As far as funding amounts are concerned, this analysis is limited in providing a holistic picture of trends in COVID-19 research funding amounts as data was available from 45 of 71 funders (69.9% of all projects). However, as the analysis makes use of all possible information that is publicly available, it can still be considered as being as comprehensive as is possible.

At a higher level, the comprehensiveness of the tracker is limited to the funders that have either provided data for the tracker or had their data extracted from online sources (if available). In this respect, there were challenges in engaging with (and obtaining data from) health research funders beyond existing networks either due to a lack of contacts or capacity from funders to contribute to the project (especially for funders whose award information is not in English). Few funders have yet identified or made available details on grants repurposed towards COVID-19 to date.

Risk of bias
This LMR of funded COVID-19 research projects uses descriptive and thematic analysis to summarise the scope of funded COVID-19 research projects. No attempts are made to assess the quality of individual studies or whether the studies meet their objectives. The potential sources of bias with project selection, quality of data reviewed, and data extraction and classification are addressed by robust fortnightly searches, template completion by funders and independent assessment and review during project classification respectively, as mentioned in the Information Sources and Search Strategy.

While the intention of the tracker and subsequent analyses are to provide as comprehensive a picture as possible of the COVID-19 research landscape, the data obtained for the tracker is more likely to be derived from funders of research that are members of UKCDR (all UK and broad disciplinary focus) and/or GloPID-R (global membership spanning HICs to LICs with a majority of national funders, and a biomedical focus). This would likely skew the results to show that more research being funded from these organisations and reflect trends in their respective portfolios (in terms of location, research focus and research activity type) than may necessarily be the case of the landscape more generally. In particular, 94.8% of the research projects included in the latest version of the tracker are from funders based in 22 high-income countries. We continue to anticipate further funding data from several ongoing calls by funders based in LMICs.

Results
Project selection
In total, 5,407 projects were assessed against the eligibility criteria outlined in the methodology and 323 were excluded for being duplicate projects or failing to meet the eligibility criteria as they were not related to COVID-19 (PRISMA Flow Diagram provided in Figure 1). The remaining 5,084 projects were assigned to the manually-coded data fields by nine project team members before being validated by an independent reviewer not involved with the initial screening and assigning process. This represents an increase of 3,226 projects as a result of the update to the analysis. All reviewers have broad expertise in global health research, policy, and funding.

Project characteristics
Summaries of the characteristics of the 5,084 projects included in the latest version of the tracker are provided in the discussion of the results (below) which breaks down the projects by:

- Funder;
- Priority and sub-priority areas;
- Location;
- Activity type;
- Study population.

A full list of the projects is provided as underlying data.

Project funder. The 5,084 projects included in the latest version of the tracker comprises of data compiled from 71 research funders based in 28 different countries representing an investment of at least $1.7 billion (funding amounts were only available for 69.9% of projects) (Figure 2). This is nearly triple the number of funders from more than double the number of countries since the previous version of the analysis (previously 25 and 13, respectively).

With the updated data, nearly one third of funded projects in the tracker were awarded by funders based in the United States (29.9%) – ranking first among all other countries, ahead of the United Kingdom (22.4%) and Canada (18.5%). This ranking at a national level is also the same in terms of known funding amounts, with funders based in the United States collectively investing $802.6m (47.5% of total known funding amount) ahead of the $436.1m invested by United Kingdom-based funders (25.8%) and the $135.3m investment made by Canadian-based funders (8.0%).

Of the 45 funders that provided data on known funding amounts, the National Institutes of Health invested the most funds according to the latest version of the tracker ($517.7m), average grant amounts were largest under the Coalition for Epidemic Preparedness Innovations (CEPI) at $13.6m.

Categorisation of projects against WHO Roadmap priorities & sub-priorities. All projects were categorised against the priorities and sub-priorities identified by the WHO in their Coordinated Global Research Roadmap, with several research projects being assigned multiple priority and/or sub-priority areas.

WHO Priority Areas. Figure 3 displays both the number of projects listed under each priority area and the known funding amounts (as not all funders provided financial information for their awarded research projects). With the novelty of COVID-19, it is not surprising that the priority area under
‘Virus: natural history, transmission and diagnostics’ continues to rank first among all nine priority areas in terms of known funding amounts at $521.6m (increasing by $324.3m since the update to the analysis) and second in terms of the number of research projects with 1,235 (an increase of 827 projects since the update) as researchers seek to improve their basic biological understanding of this new disease and apply that to diagnosis.

For five of the nine priority areas the ranking related to number of research projects and the ranking related to funds was the same. In the four instances where the rankings differ (‘Infection Prevention and Control’; ‘Candidate Therapeutics R&D’; ‘Candidate Vaccines R&D’; and ‘Social Sciences in the Outbreak Response’), these discrepancies are a reflection of the different grant values for different types of research funded in response to the COVID-19 pandemic. A notable example is that the

Figure 1. PRISMA flow diagram. The latest and previous versions of this figure are available as extended data.7
<table>
<thead>
<tr>
<th>Organization</th>
<th>Funding (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF</td>
<td>$202.5m</td>
</tr>
<tr>
<td>UKRI</td>
<td>$310.0m</td>
</tr>
<tr>
<td>NSERC Canada</td>
<td>$14.8m</td>
</tr>
<tr>
<td>NIH</td>
<td>$517.7m</td>
</tr>
<tr>
<td>CIHR</td>
<td>$120.5m</td>
</tr>
<tr>
<td>ANR</td>
<td>N/A</td>
</tr>
<tr>
<td>BMBF</td>
<td>$48.4m</td>
</tr>
<tr>
<td>CONACYT Mexico</td>
<td>N/A</td>
</tr>
<tr>
<td>European Commission</td>
<td>$118.4m</td>
</tr>
<tr>
<td>Emergent Ventures Fast Grants (N/A)</td>
<td>N/A</td>
</tr>
<tr>
<td>SNF</td>
<td>$39.6m</td>
</tr>
<tr>
<td>NIHR</td>
<td>$66.9m</td>
</tr>
<tr>
<td>EOSC</td>
<td>N/A</td>
</tr>
<tr>
<td>SFI Ireland</td>
<td>$2.0m</td>
</tr>
<tr>
<td>Institut Pasteur (N/A)</td>
<td>57</td>
</tr>
<tr>
<td>British Academy</td>
<td>$687k</td>
</tr>
<tr>
<td>ZonMw Netherlands</td>
<td>$3.5m</td>
</tr>
<tr>
<td>CSO Scotland</td>
<td>$6.0m</td>
</tr>
<tr>
<td>MINCYT-Argentina</td>
<td>$3.4m</td>
</tr>
<tr>
<td>RCN</td>
<td>$20.6m</td>
</tr>
<tr>
<td>SERB India</td>
<td>N/A</td>
</tr>
<tr>
<td>APPRISE</td>
<td>$498k</td>
</tr>
<tr>
<td>NMRC</td>
<td>N/A</td>
</tr>
<tr>
<td>Wellcome</td>
<td>$31.6m</td>
</tr>
<tr>
<td>ANRS</td>
<td>N/A</td>
</tr>
<tr>
<td>NWO Netherlands</td>
<td>N/A</td>
</tr>
<tr>
<td>Innovationsfonden Denmark (N/A)</td>
<td>32</td>
</tr>
<tr>
<td>CNRS Lebanon</td>
<td>N/A</td>
</tr>
<tr>
<td>DFID</td>
<td>$18.7m</td>
</tr>
<tr>
<td>RWJF</td>
<td>$4.5m</td>
</tr>
<tr>
<td>Novo Nordisk Foundation</td>
<td>$9.9m</td>
</tr>
<tr>
<td>RAENG</td>
<td>$649k</td>
</tr>
<tr>
<td>FAPERJ Brazil</td>
<td>N/A</td>
</tr>
<tr>
<td>Swedish Research Council</td>
<td>$3.8m</td>
</tr>
<tr>
<td>Academy of Finland</td>
<td>$21.8m</td>
</tr>
<tr>
<td>EDCTP</td>
<td>$7.7m</td>
</tr>
<tr>
<td>FNRS Belgium</td>
<td>N/A</td>
</tr>
<tr>
<td>HRB Ireland</td>
<td>$3.9m</td>
</tr>
<tr>
<td>Irish Research Council</td>
<td>$3.9m</td>
</tr>
</tbody>
</table>

Note: Multiple funders on the same row indicates co-funded projects and are counted separately to instances where one of the funders appear elsewhere.

Funding figures available for 69.9% of projects included in the latest version of the tracker database as not all funders provided financial information.
Figure 2. Number of Projects by Research Funder (funders with at least 20 projects on the latest version of the tracker displayed). Known funding amounts indicated in brackets*. The latest and previous versions of this figure are available as extended data.

- **Funders with less than 20 projects:**
 - Danish Ministry of Science Innovation and Higher Education (19 projects; $14.1m)
 - Medical Research Future Fund (19 projects; $42.6m)
 - National Science Center Poland (19 projects; $3.3m)
 - REACTing/ INserm (19 projects; N/A)
 - Carlos III Health Institute (18 projects; $5.6m)
 - Danish Independent Research Foundation (19 projects; $3.5m)
 - Elrha (15 projects; $1.4m)
 - NHMRC Centre of Research Excellence in Emerging Infectious Diseases (15 projects; N/A)
 - Health Research Council of New Zealand (13 projects; $2.3m)
 - Croatian Science Foundation (11 projects; N/A)
 - Paul Ramsay Foundation (11 projects; N/A)
 - Roche (11 projects; N/A)
 - FWO Belgium (9 projects; $2.8m)
 - Austrian Science Fund (8 projects; $2.3m)
 - Coalition for Epidemic Preparedness Innovations* (8 projects; $95.4m)
 - German Research Foundation (8 projects; N/A)
 - Lundbeck Foundation (8 projects; $1.7m)
 - Trond-Mohn Foundation (6 projects; $3.1m)
 - Wellcome Centre for Infectious Diseases Research in Africa - CIDRI (6 projects; $338k)
 - Carlsberg Foundation (5 projects; $6.0m)
 - Enterprise Ireland (5 projects; $2.0m)
 - IDA Ireland (5 projects; $2.0m)
 - Japan Agency for Medical Research and Development (5 projects; N/A)
 - Nordic Trial Alliance (4 projects; N/A)
 - Snow Medical (4 projects; N/A)
 - Volkswagen Stiftung (3 projects; N/A)
 - Bill & Melinda Gates Foundation (2 projects; $11.0m)
 - UNITAID (2 projects; N/A)
 - Chan Zuckerberg Initiative (1 projects; N/A)
 - Other Canadian funders (260 projects; N/A)
 - Other French funders (45 projects; N/A)

Abbreviations and Acronyms:
- ANR - Agence nationale de la recherche (National Research Agency)
- ANRS - Agence nationale de recherche sur le sida et les hépatites virale (National Agency for AIDS Research)
- APPRISE - Australian Partnership for Preparedness Research on Infectious Disease Emergencies
- BMBF - Bundesministerium für Bildung und Forschung (German Federal Ministry of Education and Research)
- CIHR - Canadian Institutes of Health Research
- CNRS - National council for Scientific Research
- CONACYT - Consejo Nacional de Ciencia y Tecnología
- CSO - Chief Scientist's Office
- DFID - Department for International Development
- EDCTP - European & Developing Countries Clinical Trials Partnership
- EOSC - European Open Science Cloud
- FAPERJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- FNRS - Fonds de la Recherche Scientifique
- HRB - Health Research Board
- MINCYT - Ministerio de Ciencia, Tecnología e Innovación
- NIH - National Institutes of Health
- NIHR - National Institute for Health Research
- NMRC - National Medical Research Council
- NSF - National Science Foundation
- NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek
- RAENG - Royal Academy of Engineering
- RCN - Research Council of Norway
- RWJF - Robert Wood Johnson Foundation
- SERB - Science and Engineering Research Board
- SFI - Science Foundation Ireland
- SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
- UKRI - UK Research and Innovation
- ZonMw - Nederlandse organisatie voor gezondheidsonderzoek en zorginnovatie

Figure 3. COVID-19 Research Projects Classified Against Priorities Outlined in WHO Coordinated Global Research Roadmap. The latest and previous versions of this figure are available as extended data.
average value of ‘Candidate Vaccines R&D’ projects (a research area typically associated with high financial costs) was $3.0m – the largest of any priority area. This amount is almost sixteen-times the average grant amount awarded under the priority area with the smallest average ‘Infection Prevention and Control’ ($187k).

In spite of the addition of 3,226 projects to the tracker database, the two priority areas of ‘Animal and environmental research on the virus origin, and management measures at the human-animal interface’ (60 projects totalling $11.8m) and ‘Ethics considerations for research’ (111 projects totalling $19.1m) continue to receive the least funding from the lowest number of research funders (16 and 29, respectively, compared to a mean average of 58 for the other priority areas).

WHO Sub-Priority Areas. Figure 4 shows how the 5,084 COVID-19 research projects included in the latest version of the

Virus: natural history, transmission and diagnostics

- Diagnostic Products ($139.7m)
- Virus compartments, shedding and history ($93.5m)
- Phenotypic change and adaptation ($39.0m)
- Characterize immunity ($300.9m)
- Disease models ($27.3m)
- Virus stability ($11.9m)

Animal and environmental research...

- Animal source and transmission route ($11.1m)
- Spill-over risk factors ($145k)
- Human-animal risk reduction ($2.1m)

Epidemiological Studies

- Transmission dynamics ($125.8m)
- Disease severity ($57.9m)
- Susceptibility ($44.3m)
- Control and mitigation measures ($60.3m)
Clinical characterization and management

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe disease: prognostic factors ($72.1m)</td>
<td>221</td>
</tr>
<tr>
<td>Pathophysiology of infection ($243.6m)</td>
<td>323</td>
</tr>
<tr>
<td>Clinical trial endpoints ($11.5m)</td>
<td>11</td>
</tr>
<tr>
<td>Processes of care ($88.0m)</td>
<td>326</td>
</tr>
<tr>
<td>Adjuvant therapies ($14.3m)</td>
<td>26</td>
</tr>
<tr>
<td>Core clinical outcomes ($1.8m)</td>
<td>5</td>
</tr>
</tbody>
</table>

Infection prevention and control, including health care workers’ protection

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction of movement: effectiveness ($22.8m)</td>
<td>135</td>
</tr>
<tr>
<td>PPE: effectiveness ($19.3m)</td>
<td>171</td>
</tr>
<tr>
<td>Transmission and the environment ($50.2m)</td>
<td>261</td>
</tr>
<tr>
<td>Compliance with IPC interventions ($22.4m)</td>
<td>165</td>
</tr>
</tbody>
</table>

Candidate therapeutics R&D

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro and vivo testing ($174.1m)</td>
<td>420</td>
</tr>
<tr>
<td>Prophylactic use ($29.8m)</td>
<td>56</td>
</tr>
<tr>
<td>Supply of therapeutics ($2.2m)</td>
<td>13</td>
</tr>
<tr>
<td>Therapeutics evaluation ($101.9m)</td>
<td>117</td>
</tr>
<tr>
<td>Combination therapies ($7.3m)</td>
<td>14</td>
</tr>
</tbody>
</table>
Candidate Vaccines R&D

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical evaluation candidates ($297.3m)</td>
<td>130</td>
</tr>
<tr>
<td>Standardise animal models ($10.1m)</td>
<td>28</td>
</tr>
<tr>
<td>Standardise assays ($13.2m)</td>
<td>23</td>
</tr>
<tr>
<td>Phase 2b/Phase 3 Master Protocol ($2.5m)</td>
<td>2</td>
</tr>
<tr>
<td>Potency assays ($16.8m)</td>
<td>13</td>
</tr>
</tbody>
</table>

Ethics considerations for research

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapting existing ethical standards ($4.9m)</td>
<td>16</td>
</tr>
<tr>
<td>Education, access, and capacity building ($2.4m)</td>
<td>12</td>
</tr>
<tr>
<td>Restrictive public health measures: impact ($2.6m)</td>
<td>17</td>
</tr>
<tr>
<td>Public health communications ($7.0m)</td>
<td>38</td>
</tr>
<tr>
<td>Ethical governance of research ($1.6m)</td>
<td>12</td>
</tr>
</tbody>
</table>

Social sciences in the outbreak response

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake of public health measures ($114.2m)</td>
<td>608</td>
</tr>
<tr>
<td>Clinical care and health systems ($8.4m)</td>
<td>74</td>
</tr>
<tr>
<td>Media and communication ($48.6m)</td>
<td>308</td>
</tr>
<tr>
<td>Engagement and participation ($11.4m)</td>
<td>66</td>
</tr>
<tr>
<td>Sexual and reproductive health ($2.4m)</td>
<td>17</td>
</tr>
<tr>
<td>International cooperation ($23.9m)</td>
<td>27</td>
</tr>
</tbody>
</table>

Notes:

1. *Individual research projects may be assigned to multiple primary and/or secondary WHO research sub-priority areas.*
2. *Funding figures available for 69.9% of projects included in the latest version of the tracker database as not all funders provided financial information.*

Figure 4. Number of Research Projects Included Under Each Sub-Priority Outlined in WHO Coordinated Global Research Roadmap (known funding amounts indicated in brackets). The latest and previous versions of this figure are available as extended data.
tracker have been categorised against abbreviated versions of the 44 sub-priorities mentioned in the WHO Roadmap. The names of the sub-priorities are listed in full as Extended data.

The funding patterns at the WHO priority-level are reflected at the sub-priority level. Notably, seven of the nine sub-priorities with at least 300 awarded research projects are from the three priority areas with the greatest number of projects – namely ‘Virus: natural history, transmission and diagnostics’ (3 sub-priorities), ‘Social sciences in the outbreak response’ (2) and ‘Clinical Characterization and Management’ (2). The sub-priority area with the greatest total investment was ‘characterize immunity’ under the ‘Virus: natural history, transmission and diagnostics’ priority area – a priority area which also features three of the top ten sub-priority areas awarded the greatest amount of known funding. Additionally, the top two sub-priority areas with the largest average amount of known funding are both from the ‘Candidate Vaccines R&D’ priority area.

More specific research investment gaps emerge within the two priority areas with the lowest levels of investment. While the priority area ‘Animal and environmental research on the virus origin, and management measures at the human-animal interface’ consists of just three sub-priority areas, the ones focussing on ‘Socioeconomic and behavioural risk factors for spill-over’ (4 projects worth $145k) and ‘Risk reduction strategies at the human-animal environment interface’ (5 projects worth $2.1m) rank in the bottom four among all 44 sub-priorities in terms of both number of projects (41st and 43rd, respectively) and known funding amounts (41st and last, respectively). The other notable sub-priority with limited funding relates to ‘Develop core clinical outcomes to maximise usability of data across range of trial’ (5 projects worth $1.8m) under the ‘Clinical characterization and management’ priority area.

Classification of research projects which did not categorise against WHO Roadmap (emergent categories). The majority of research projects which did not categorise against the WHO Roadmap are social sciences research that did not align with the sub-priorities in the WHO Roadmap. These are shown by the newly created categories in Figure 5. These highlight important themes for COVID-19 research, which both researchers and funders are prioritising.

![Figure 5](https://example.com/figure5.png)

Notes:

i. *Individual research projects may be assigned to multiple emergent priorities/sub-priorities*

ii. *Funding figures available for 69.9% of projects included in the latest version of the tracker database as not all funders provided financial information.*

Figure 5. Number of research projects classified against emergent research priority and sub-priority areas not previously identified (known funding amounts indicated in brackets). The latest and previous versions of this figure are available as extended data.

Page 14 of 31
‘Mental health’ is the most prominent emergent category which does clearly fall within a health remit and it is notable both that this type of research is receiving much attention, but also that currently this is limited to research from a social science perspective, rather than a clinical perspective (and the same can also be said of research addressing ‘digital health’). The further emergent social sciences related sub-priorities of ‘policy and economy’, ‘education’, ‘logistics’ and ‘food security’ and emergent priority of ‘environmental impacts’ are all focussed on the broader social and economic impacts of the COVID-19 recovery and reflect the broader COVID-19 research focus of the tracker and remits of the funders whose data are currently incorporated with further investment across all of these over the past three months.

Since the initial mapping, a new thematic area of research has emerged. Within the WHO priority area of clinical characterisation and management, funding of research that focuses on the long-term morbidity and enduring symptoms of COVID-19, or ‘long COVID’ with 45 projects funded worth at least $159.9m.

Location of projects. Figure 6 summarises the location where research projects are taking place. Research is being conducted in 134 countries with the greatest number of projects taking place in the United States (1,503 projects) followed by the United Kingdom (1,097) and then Canada (961).

Of the 5,084 research projects, 243 (4.8%) take place across multiple countries, with research partnerships between Spain and Germany being the most common (21 projects).

Classifying countries by income categories (using the Organisation for Economic Co-operation and Development’s Development Assistance Committee list), nearly all research projects (89.7%) are taking place, at least in part, in high-income countries. Importantly, the number of research projects taking place in at least one of the 77 Official Development Assistance (ODA) recipient countries has increased to a total of 513 (10.1%) projects on this update to the analysis (previously 148 projects and 7.7% of projects). Of these 513 projects, nearly two-thirds (63.7%) are taking place in at least one upper-middle-income country.

Just 406 projects (8.0%) are taking place exclusively in LMICs – with Mexico being the country with the greatest number of projects (104), followed by Argentina (55) and India (54). This ordering of countries is largely a result of the present selection of data in the tracker from funders based in these LMICs. Though 47 projects are taking place in China, it is acknowledged that there is much more nationally funded research occurring for which data has not yet been obtained. Among the 406 projects taking place exclusively in LMICs, 11.1% is being conducted across multiple countries.

Figure 6. Location of coronavirus disease 2019 (COVID-19) research projects by country, WHO sub-region and Organisation for Economic Co-operation and Development’s (OECD) Development Assistance Committee (DAC) list categories. The latest and previous versions of this figure are available as extended data.
Characteristics of research projects in Low- and Middle-Income Countries (ODA-recipient countries). Most research projects in resource-limited settings could be categorised against one or more WHO research priorities. In addition, several were also categorised against the context-specific research priorities identified by the UKCDR, African Academy of Sciences (AAS) and the Global Health Network (TGHN) and are shown in Figure 7 and Figure 8.

Figure 7 shows that some projects mapped to the context specific sub-priorities identified for LMICs under all the 9 WHO broad priorities. The predominant theme was to research improved faster and easier diagnostic tools for COVID-19 whilst research to understand COVID-19 in conflict zones and among refugees and migrant populations ranked second. Similarly, a few projects mapped to the new broad priority areas with the highest category being the cross-cutting theme involving the use of technology in various aspects of the pandemic response. Figure 8 shows those projects mapping to existing WHO priorities ‘requiring greater research emphasis in LMICs’. Here the most projects did map to ‘public health messaging and addressing myths and mistrust’ showing and ‘adherence to and trust in public health interventions’ which might indicate the importance of these research areas in controlling the pandemic in LMICs. In contrast the highlighted priorities involving stakeholder engagement, health systems research, effective PPE use and examining the relationships between repeated viral exposure and diseases severity in frontline healthcare workers were lacking.

National Council of Science and Technology Mexico (CONACYT), Ministry of Science, Technology and Innovation is the Ministry of Science of Argentina (MINCYT) and Science and Engineering Research Board (SERB) fund the most projects involving LMICs as shown in Figure 9. All projects funded by Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) are in South Africa. Of the funders not based in less-resourced countries UK Research and Innovation (UKRI), ANRS (France Recherche Nord & sud Sida-hiv Hépaittes - French Agency for Research on AIDS and Viral Hepatitis) and Canadian Institutes of Health Research (CIHR) fund the most research projects. Notably, these funders support research across multiple countries with UKRI-funded projects involving 28 different countries, though projects are most of which are concentrated in China and Uganda. (where a UKRI MRC centre is located).

The National Science Foundation (NSF) has funded 8 projects of which four involve China and three are described as being global. The majority of projects funded by Coalition for Epidemic Preparedness Innovations (CEPI) are in HICs with only 3 in China and India. This likely speaks to the availability of the requisite research capacity in HICs for carrying out preclinical and early stages of vaccine research which these projects are primarily concerned with. It is expected that future updates to the tracker will feature even more research being conducted in LMICs as the outcome of funding calls become known following the increased number of LMIC-specific calls launched by research funders.

Cross-cutting themes. During the review and classification process projects were classified against nine additional characteristics: capacity strengthening; cohorts; gender; implementation; indirect health impacts; innovation; modelling; pandemic preparedness and repurposed grants (descriptions of the types of projects classified against these are provided in the notes for Table 3).

Looking at the number of projects under each cross-cutting theme (Table 3), the theme with the greatest number of projects, ‘innovation’, is largely driven by the large presence of UKRI data (365 projects).

The vast majority of repurposed grants (80.9%) were funded by the National Institutes of Health (NIH) totalling $91.5m. The number of repurposed grants in the tracker is expected to increase as funders continue to make this data available.

Table 3 also summarises the distribution of the cross-cutting themes against the WHO Priority Areas. Knowing that much of the repurposed grants were designated as such early in the pandemic, it is not surprising to see that, among these repurposed grants, the priority area of ‘Virus: natural history, transmission and diagnostics’ has the greatest number of projects. Within this, these repurposed grants were classified against the sub-priorities to ‘understand virus compartments, shedding and natural history of disease’ (33 projects) and ‘characterize immunity’ (32 projects) most frequently.

For the cross-cutting theme of ‘capacity strengthening’, more than half of these projects (54.2%) are taking place in at least one LMIC and, among these projects, mostly within the priority area of ‘Virus: natural history, transmission and diagnostics’ (7 of 13 projects taking place in at least one LMIC).

Categorisation of research projects against HRCS categories. To improve our understanding of the type COVID-19 research funded and provide a categorisation that would not change during the course of the pandemic and was comparable to other disease research portfolios, the projects included in the tracker were coded against the research activity codes outlined by the HRCS (Figure 10).

Due to COVID-19 being identified relatively recently, most of the funded research projects included in the latest version of the tracker address the more elementary stages of biomedical and health research, specifically underpinning research (19.5%), aetiology (24.9%) and the prevention of disease and conditions, and promotion of well-being (8.8%).

While only 953 of 5,084 projects (18.7%) have been classified against the HRCS research activity codes, it is anticipated that all research projects will be classified with future updates to this analysis.
Figure 7. Research projects in LMICs categorised against their research priorities (LMIC Research Priorities). The latest and previous versions of this figure are available as extended data.

The use of technology in various aspects of pandemic response.

<table>
<thead>
<tr>
<th>Research Project</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the impact of public health interventions on the environment (including air pollution and carbon dioxide emissions)</td>
<td>4</td>
</tr>
<tr>
<td>Ensure effective measures including community surveillance and animal screening techniques are in place to rapidly identify emerging nosocomial diseases.</td>
<td>3</td>
</tr>
<tr>
<td>Evaluation of governmental policies and lessons learnt in preparation for the next pandemic.</td>
<td>2</td>
</tr>
<tr>
<td>Understanding COVID-19 in the context of conflict, civil war, and refugee situations</td>
<td>18</td>
</tr>
<tr>
<td>Investigate ways of ensuring transparency of information flow and mitigating false information spread by various mechanisms.</td>
<td>1</td>
</tr>
<tr>
<td>Studies of leadership and decision strategies in response to the COVID Pandemic.</td>
<td>2</td>
</tr>
<tr>
<td>Investigate innovative approaches to short-term economic support of vulnerable populations such as cash transfer by mobile money mechanisms</td>
<td>1</td>
</tr>
<tr>
<td>Ethical considerations for resource allocation to LMICs.</td>
<td>1</td>
</tr>
<tr>
<td>Identify correlation and protection from SOP and other vaccines e.g. INGG.</td>
<td>4</td>
</tr>
<tr>
<td>Investigations on convalescent antiserum potency as a therapeutic option.</td>
<td>3</td>
</tr>
<tr>
<td>Develop new PPE approaches using local materials and manufacturing processes.</td>
<td>2</td>
</tr>
<tr>
<td>Mental health support for frontline healthcare workers.</td>
<td>2</td>
</tr>
<tr>
<td>Develop innovative approaches to use as alternatives to ventilation.</td>
<td>1</td>
</tr>
<tr>
<td>Vitamin D levels in COVID-19 severity.</td>
<td>2</td>
</tr>
<tr>
<td>Identify prognostic factors for severe disease.</td>
<td>16</td>
</tr>
<tr>
<td>Use of m-Health technology and GIS mapping to monitor disease spread patterns.</td>
<td>5</td>
</tr>
<tr>
<td>Establish suitable cohorts and prospectively collect laboratory and outcome data.</td>
<td>11</td>
</tr>
<tr>
<td>Long-term health impacts and complications of contracting COVID-19 – with emphasis on childhood/those with comorbidities.</td>
<td>2</td>
</tr>
<tr>
<td>Have a special focus on potentially at-risk groups including malnourished individuals and people with HIV, TB, or liver cell</td>
<td>11</td>
</tr>
<tr>
<td>Examine relationships to other lung diseases.</td>
<td>5</td>
</tr>
<tr>
<td>Environmental studies of SARS-CoV-2 including sewage and sewage management practices.</td>
<td>7</td>
</tr>
<tr>
<td>Improved diagnostic tools for safer sample collection, faster and easier assays.</td>
<td>30</td>
</tr>
<tr>
<td>Support work to examine alternative approaches to delivering testing e.g. centralized versus decentralized lab facilities.</td>
<td>1</td>
</tr>
<tr>
<td>Support work to develop cheaper, faster easier to use in field antigen tests (for virus detection).</td>
<td>3</td>
</tr>
<tr>
<td>Support work to develop cheaper, faster easier to use in field antibody tests (for determining exposure).</td>
<td>4</td>
</tr>
<tr>
<td>Establish capacity for genotyping virus e.g. to detect new mutations over time.</td>
<td>6</td>
</tr>
</tbody>
</table>
Study populations included in projects. Most research projects included in the latest version of the tracker deal with human populations (52.4%) with a significant emphasis on populations that have tested positive for COVID-19 (20.3% of research projects studying human populations) as well as population groups defined as vulnerable within the project (18.1% of research projects).

![Graph showing research projects in LMICs categorized against 'existing WHO Priorities requiring greater research emphasis'.](image)

Figure 8. Research Projects in LMICs categorized against ‘existing WHO Priorities requiring greater research emphasis’. The latest and previous versions of this figure are available as extended data.

<table>
<thead>
<tr>
<th>Research Focus</th>
<th>Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public health messaging and addressing myths and mistrust</td>
<td>13</td>
</tr>
<tr>
<td>Adherence to and trust in public health interventions such as quarantine and social distancing</td>
<td>11</td>
</tr>
<tr>
<td>Understanding zoonotic leap between human and animals</td>
<td>11</td>
</tr>
<tr>
<td>Understanding infections and outcomes in vulnerable populations including children, persons living with disabilities, ethnic minorities and refugees</td>
<td>8</td>
</tr>
<tr>
<td>The impact of redirecting resources and public health interventions towards COVID-19 on other disease burdens.</td>
<td>5</td>
</tr>
<tr>
<td>The effects of the disease on pregnant women</td>
<td>5</td>
</tr>
<tr>
<td>Engaging relevant stakeholders (including religious leaders) in research to enhance community sensitization,</td>
<td>2</td>
</tr>
<tr>
<td>Health Systems research & strengthening to mitigate impact of COVID-19 on capacity</td>
<td>2</td>
</tr>
<tr>
<td>Effective use of PPE for frontline healthcare workers (emphasis on nurses)</td>
<td>2</td>
</tr>
<tr>
<td>Relationship between repeated viral exposure and disease severity (in frontline workers)</td>
<td>1</td>
</tr>
</tbody>
</table>
projects studying human populations). **Figure 11** summarises how the research projects are classified across all levels of the study population categorisation system outlined above.

Figure 9. The Major Funders in ODA-Recipient Countries (Known funding amounts indicated in brackets*). The latest and previous versions of this figure are available as extended data. **Abbreviations and Acronyms:** ANR - Agence nationale de la recherche (National Research Agency); ANRS - Agence nationale de recherche sur le sida et les hépatites virale (National Agency for AIDS Research); BMBF - Bundesministerium für Bildung und Forschung (German Federal Ministry of Education and Research); CEPI - Coalition for Epidemic Preparedness Innovations; CIDRI - Wellcome Centre for Infectious Diseases Research in Africa; CIHR - Canadian Institutes of Health Research; CNRS - National council for Scientific Research; CONACYT - Consejo Nacional de Ciencia y Tecnología (Mexico National Council of Science and Technology); DFID - Department for International Development; DHSC - UK Department of Health and Social Care; EDCTP - European & Developing Countries Clinical Trials Partnership; EOSC - European Open Science Cloud; FAPERJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (Research Foundation of the State of Rio de Janeiro); FNSC - Fonds de la Recherche Scientifique (National Fund for Scientific Research); HRB - Health Research Board; IDRC - International Development Research Centre; MINCYT - Ministerio de Ciencia, Tecnología e Innovación (Argentina Ministry of Science, Technology and Innovation); NIH - National Institutes of Health; NIHR - National Institute for Health Research; NMRC - National Medical Research Council; NSF - National Science Foundation; NWO - Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Dutch Research Council); RAENG - Royal Academy of Engineering; RCN - Research Council of Norway; RWJF - Robert Wood Johnson Foundation; SERB - Science and Engineering Research Board; UKRI - UK Research and Innovation.

Trends in Funding Over Time. To understand the progression of funding for COVID-19 research over time, **Figure 12** summarises the cumulative sum of projects and funding amounts.
Table 3. Number of Research Projects Included Under Each Cross-Cutting Theme and WHO Priority Area (known funding amounts indicated in brackets).

<table>
<thead>
<tr>
<th>Cross-cutting theme</th>
<th>Number of Projects</th>
<th>Virus: natural history...</th>
<th>Animal and env. research...</th>
<th>Epid. studies</th>
<th>Clinical char...</th>
<th>Infection prevention and control...</th>
<th>Candidate therapeutics R&D</th>
<th>Candidate vaccines R&D</th>
<th>Ethics...</th>
<th>Social sciences...</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation ($94.9m)</td>
<td>619</td>
<td>41</td>
<td>0</td>
<td>26</td>
<td>127</td>
<td>199</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>104</td>
<td>168</td>
</tr>
<tr>
<td>Modelling ($74.3m)</td>
<td>378</td>
<td>89</td>
<td>7</td>
<td>191</td>
<td>37</td>
<td>72</td>
<td>28</td>
<td>19</td>
<td>4</td>
<td>69</td>
<td>45</td>
</tr>
<tr>
<td>Repurposed Grants ($107.2m)</td>
<td>183</td>
<td>70</td>
<td>5</td>
<td>21</td>
<td>32</td>
<td>6</td>
<td>34</td>
<td>21</td>
<td>2</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>Cohorts ($239.1m)</td>
<td>120</td>
<td>35</td>
<td>0</td>
<td>40</td>
<td>50</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Pandemic Preparedness ($35.6m)</td>
<td>46</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>Implementation ($8.3m)</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>Indirect Health Impact ($6.9m)</td>
<td>29</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Gender ($4.2m)</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Capacity Strengthening ($9.3m)</td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes:
1. Research projects may be assigned with multiple cross-cutting themes and WHO priority areas.
2. Highlighted cells indicate the WHO Priority Area with the greatest number of projects for each cross-cutting theme (excluding projects that were not assigned a priority area, marked N/A).
3. Funding figures available for 69.9% of projects included in the latest version of the tracker database as not all funders provided financial information.
4. Definitions of cross-cutting themes-
 - **Capacity strengthening**: Projects which involve a capacity strengthening component. Capacity strengthening at all levels- individual, institutional and national is included.
 - **Cohorts**: Projects carried out in newly established cohorts or pivoted existing cohorts for COVID-19 research.
 - **Gender**: Projects which incorporate a gendered lens in description of methods/ objectives and project outputs.
 - **Implementation**: Grants for facilitating research administration.
 - **Indirect Health Impacts**: Projects focusing on indirect health impacts of COVID-19, for example related to disruptions in healthcare services, neonatal, maternal and child health, non-communicable diseases, chronic disease conditions and mental health.
 - **Innovation**: Projects involving novel inventions and interventions.
 - **Modelling**: Projects involving any form of modelling in the methodology.
 - **Pandemic Preparedness**: Projects with preparedness for future pandemics as an objective.
 - **Repurposed projects**: Pre-COVID research grants (usually for MERS, SARS and other pathogens) where additional funding has been awarded for tailoring to COVID-19 research.
Figure 10. Research Activities of COVID-19 Research Projects Classified Using Health Research Classification System*. The latest and previous versions of this figure are available as extended data⁷.

*953 of 5,084 (18.7%) projects coded. All research projects to be classified with future updates to analysis.

Figure 11. COVID-19 Research Projects Classified Using Study Population Categorisation System (number of projects indicated in brackets). The latest and previous versions of this figure are available as extended data⁷.

Note: Individual research projects may be classified against multiple categories/sub-categories.
Figure 12. Cumulative number of projects and known funding amounts* by month of funder database release.

Notes:

i. Funding figures available for 69.9% of projects included in the latest version of the tracker database as not all funders provided financial information.

ii. Precise dates of database release could not be obtained for 52 projects on tracker (1.02%)

Discussion

This three-month update review of the UKCDR and GloPID-R COVID-19 Research Project Tracker has described the huge investment and wide range of research projects repurposed or newly funded related to COVID-19 captured in the tracker between January 1 and October 15, 2020. It has shown a continued expansion of both funding and capture of funding across the global funding landscape in the tracker, including importantly research taking place within LMICs. The progression of funding has expanded the funding portfolio in the previously well-funded areas, in particular ‘virus natural history, transmission and diagnostics’, ‘candidate therapeutics R&D’ and ‘candidate vaccines R&D’ as well as starting to fill some of the previously less funded sub-priority areas, such as ‘supply of therapeutics’ and ethics ‘education, access and capacity building’.

We are keen for researchers, funders and policy makers to engage with these data directly for their areas of specialism and interest, through extracting the relevant data from the tracker.
and undertaking their own analyses to aid decision making. Given the time demands on all parties in the pandemic, we hope that the regular provision of these descriptive and thematic analyses provide broad insights to help inform the research community and improve the efficiency and effectiveness of the research response going forwards.

Alignment of the funded research portfolio to the WHO Roadmap

Importantly, here we have aligned the funded research to the mid- long term research and innovation priorities of the WHO Roadmap, and disaggregated the data by locations and population to give a detailed picture of how the research landscape aligns to these global research priorities.

The majority of research funded aligns well to the WHO Roadmap, however, gaps in the global research funding portfolio persist, specifically related to the priority areas of ‘Ethics considerations for research’ and ‘Animals and environmental’. We believe that ‘Animals and Environmental’ does represent important and real research gaps, towards which the research community should be shifting its attention. It is also important to note the intention and detail of these and all priority areas within the WHO Roadmap, where there is variability in who is best positioned to address the research sub-priorities with some clearly needing external research activity and others indicating research activity which the WHO planned to undertake directly themselves.

The lack of alignment of funded research projects to the ‘Ethics considerations for research’ priority may be one such example, as it misses the direct activity that the WHO has undertaken in to address this priority through direct research and provision of important guidance on ethical matters relating to COVID-19 which align to the sub-priorities as well as the clear strength of ethical consideration across many research projects (which don’t have a core focus on ethics). Despite these considerations, both researchers and research funders need to pay greater attention to the prominence placed on ethical considerations for research by the WHO and ensure that further research is undertaken on those aspects outlined under the roadmap priority area explicitly.

For ‘Animals and environmental research’, again the WHO is currently undertaking direct activity in this regard (through their developing mission with China to identify the specific source and intermediate pathways of transmission for SARS CoV-2 into humans). However, except for a few notable projects in LMICs, the instigation of necessary broader research activity in this area, particularly looking towards gain of results across studies and should therefore be explicit, pointing to the generally observed lack of coordination beyond a few pre-established clinical trial networks as highlighted in discussions at the recent GloPID-R Synergies Meetings in contrast, the variability of research activity indicated within the ‘Candidate therapeutics R&D’ priority area appears to reflect the inter-dependencies of these sub-priorities rather than necessarily a gap needing immediate funding, with research into ‘Supply of therapeutics’ depending to some extent on the identification of particular safe and effective therapeutics.

For those sub-priorities where research investments have been focused there will continue to be benefits to enhanced coordination. We have already highlighted the wide range of social science research projects addressing ‘Uptake of public health measures’ and ‘Media & communication’ sub-priorities to the WHO COVID-19 Social Sciences working group. The basic virus research on ‘Diagnostic products’, ‘Virus compartments shedding and history’ and ‘Charactering immunity’ are further areas where coordination should be explored globally due to large funded research portfolios. Many of these basic virus research projects are explicitly linked to the early stages of candidate therapeutic, vaccine and diagnostic design, and as results now start to become available from late stage trials on the effectiveness of various classes of these; there is a need to refine the focus of the pipeline research more strategically to both target remaining gaps and build on emerging successes.

Location of research

Most of the funded research projects in the tracker are located in HICs, reflecting national funding by some of the wealthiest research funders during the first phase of this pandemic, with the truly global nature of the pandemic meaning that virus was circulating in these countries to enable relevant clinical research. A large amount of research has also been funded within China, although as explained in the limitations we have not managed to incorporate this. The global distribution of funding is now starting to shift, with recent funding calls and announcements related to LMICs. There appears to be a growing...
Recognition that context specific research is needed in LMICs, although the results presented here show only small proportional expansion of funding dedicated to context specific research priorities with an important focus on faster and easier diagnostic tools and research to understand the disease in fragile environments. There remain clear research gaps relating to health systems, optimal personal protective equipment use, health care worker support and community engagement. We will continue to expand our analyses in this area as this is an area of focus for COVID CIRCLE and we have now published a separate detailed sub-analysis of the baseline tracker data relating to COVID-19 research in Africa, in collaboration with the African Academy of Sciences.

Research populations

The disaggregation of research projects by populations is particularly insightful with regards to the ‘Social Sciences’ WHO Roadmap priority, but also for the ‘Clinical management’ and ‘Epidemiological studies’ priority areas. A range of vulnerable populations appear to be well represented for the social sciences including ‘minority populations’ with recent funding calls in the UK (by UKRI and National Institute for Health Research (NIHR)) having focussed on researching Black, Asian and Minority Ethnic (BAME) populations due to the emerging evidence that they are at higher risk from COVID-19 than white people. A range of health care worker populations and other frontline workers are also included in research funded which again is important due to the clear evidence on greater risks of exposure to individuals in certain occupations in this pandemic. Children are well represented in the epidemiological studies in accordance with the prioritisation of understanding their role in transmission.

Beyond the WHO Roadmap

Given the funded research projects within the tracker relate to disciplines beyond health (with relevance to COVID-19) it is unsurprising that several important emergent research themes identified relating to broader social sciences disciplines (policy and economy; education; logistics and food security) and also environmental research, extend beyond the priorities included in the WHO Roadmap Priorities. These all represent important areas for COVID-19 research which funders and researchers are already prioritising with research projects. The two emergent themes of mental health and digital health are however directly relevant to the health research remit and appear to have not been sufficiently covered in the WHO Roadmap document, although projects on these are being funded. The newly emerging category of research on long COVID, was not evident or anticipated as a research need at the time of development of the WHO Roadmap (although it should now inform the need for prioritisation of research including long-term follow up of cases for any newly emerging disease).

We may also be observing the evolution of research priorities from response to recovery and expect to see further examples of this. The expansion of COVID-19 research beyond the original WHO Roadmap document illustrates the wide-reaching social, economic and cultural impacts of the pandemic. We have been collaborating with the development of the recently released UN Research Roadmap for the COVID-19 Recovery, which identifies 25 research priorities across five key areas (health systems, social protection and basic services, economic response and recovery, macroeconomic response and multilateral collaboration and social cohesion and community resilience) and future inclusion of these priorities may help categorise the many social sciences projects which fall outside the remit of the WHO roadmap.

A key strength of this tracker is its breadth and we have therefore undertaken some initial cross-cutting thematic analyses across it here to highlight additional variables that cross-cut disciplines with the inclusion of capacity strengthening, innovation, repurposed grants, modelling, cohorts, pandemic preparedness, implementation, indirect health impact, gender and capacity. The analyses on these themes will be given greater focus in ‘tracker highlight’ analyses released on the tracker website.

Conclusion

In conclusion, we have here provided a detailed review and thematic analysis across the COVID-19 funded research available and we now encourage the research community to use this and the tracker tool to support informed decision making on further research prioritisation going forwards, based on the knowledge of what research is already initiated. We encourage research funders to continue to submit their data to the tracker to ensure it can be as effective as possible.

The global research response has aligned well to the WHO Roadmap, however clear research gaps remain in the portfolio relating to ‘Ethics considerations for research’ and ‘Animals and environmental’ priority areas as well as research taking place in and relating to priorities of relevance to LMICs. Research relating to diagnostics, therapeutics and vaccines (from basic research onwards) have now all received substantial investment, across a huge number of different studies around the world. To ensure the research investments yield impact, there is now need for enhanced coordination and refinement.

We have also shown here the power of tracking research funding at source in real-time, which is particularly important in the fast-moving research environment created by a pandemic, but may have benefits for other global collaborative research efforts going forward. The issue within this pandemic of nationally funded projects resulting in underpowered studies not achieving their aims, means that researchers and funders need to be much more strategic going forwards to efficiently and effectively advance knowledge within epidemics and pandemics. Tools such as this, can facilitate global collaboration and solidarity to maximise the efficiency of research funding.

Limitations of findings and challenges

To the best of our knowledge we have compiled the most comprehensive database of funded COVID-19 research. We...
are however very mindful of its inherent limitations and the difficulties in gaining a fully comprehensive picture in what is a truly global research effort to a global pandemic. One main limitation is the absence of commercial research data making inferences on gaps in the vaccine and therapeutics portfolios difficult (this is lacking due to associated intellectual property restrictions). This tracker however has rich data on the early stage development research for those same priorities which is valuable for public funder coordination efforts and enables thematic analyses across disciplines. Another limitation is the fact that few funders to date have shared data on repurposed grants or grants for institutional funding which may have been used for COVID-19 related research.

We are also aware of several funders across wider geographies and disciplines, from whom we have not yet been able to incorporate data. We call here for further research funders (especially within LMICs) to submit their data to make this tracker and associated analyses more accurate to improve the ongoing coordination and help focus limited resources.

The alignment of research in this tracker to the priorities outlined in the WHO Roadmap also has its challenges, given the Roadmap was produced at speed by drawing together findings from different working groups operating in different ways. The resulting priorities are unsurprisingly imbalanced with some covering much broader research areas than others and with not all sub-priorities intended to be addressed by newly funded research. We have tried to account for this in the discussion of the results here. Another limitation of these priorities and indeed any priorities in a pandemic is their limited temporal nature. The WHO Roadmap priorities that we have mapped here, although named mid- to long-term priorities, were identified by world experts in February 2020, at a time when the majority of cases of COVID-19 were still in China and a pandemic had not yet been declared. We will therefore be updating our mapping as soon as any new version of the WHO Roadmap is released as research priorities have evolved with increasing knowledge.

Sustainability and future work
This living mapping review will be updated on a quarterly basis for the duration of the COVID CIRCLE initiative. Future planned work includes incorporation of any new priorities or sub-priorities from any revision of the WHO Roadmap. Given the tracker contains a broad range of research relating to COVID-19 (beyond health research) and the evolution towards longer term thinking around research priorities, we are also discussing incorporating coding to the UN COVID Recovery Research Roadmap and are in discussions with the team who have developed this.

Data availability
Underlying data
The continuously updated data related to this study are openly available in the ‘COVID-19 Research Project Tracker by UKCDR & GloPID-R’ at https://www.ukcdr.org.uk/funding-landscape/covid-19-research-project-tracker/.

Harvard Dataverse: Replication Data for Baseline results of a living systematic review for COVID-19 funded research projects. https://doi.org/10.7910/DVN/YZMVWL

This project contains the following underlying data:
- Replication data for ‘A living mapping review for COVID-19 funded research projects: three-month update’ (2020-12-06)

Extended data

This project contains the following extended data:
- Ext data 1 COVID19 Research Project Tracker_ Template_ Norton et al August 2020.xlsx (Template spreadsheet)
- Ext data 2 grant sources Norton et al Dec 2020.docx (43.01 kB)
- Ext data 3 WHO priorities Norton et al August 2020.docx (WHO COVID-19 research priorities)
- Ext data 4 African and LMIC research priorities Norton et al August 2020.docx (List of African and LMIC research priorities)
- 20201118 - Figure 1 (PRISMA Flow).docx
- 202001104 Figures (2, 4, 5, 10, 12) and table 3.docx
- 20201104 - Figures (3, 6 & 11).pptx
- Figures 7, 8 and 9.docx

Reporting guidelines
Figshare: PRISMA checklist for ‘Baseline results of a living systematic review for COVID-19 funded research projects’ https://doi.org/10.6084/m9.figshare.12847928.v2

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements
We would like to thank all funders who have provided data to the tracker to date. We thank Alice Cross from UKCDR for her support to the authors in coding on the tracker. We also thank the Infectious Diseases Data Observatory (IDDO) for inspiring us to undertake this analysis as a living review, through their living systematic review of COVID-19 clinical trial registrations.
References

Open Peer Review

Current Peer Review Status: ✔ ✔

Version 2

Reviewer Report 21 December 2020
https://doi.org/10.21956/wellcomeopenres.18093.r41885

© 2020 Smith P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peter Smith
MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 21 October 2020
https://doi.org/10.21956/wellcomeopenres.17862.r40581

© 2020 Smith P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peter Smith
MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK

This assembly of the database on which this “systematic review” is based clearly represents a major effort. The database is likely to be most useful to funders, who will wish to avoid supporting research that is unnecessarily duplicative and it will also be of value to researchers seeking to identify others who are working in a similar area or to identify research areas that seem to have been relatively neglected. The authors have gathered data on research supported by 25 funders, mostly based in high income countries. How complete this is, even for these funders is difficult to judge, but based on the projects supported by each funder, there seems to be a strong bias.
towards UK funders. It is surprising, for example, to see the US NIH having supported less than 25% of the number supported by UKRI. A notable deficiency in the database, acknowledged by the authors, is the lack of data from China, where there has been substantial research on SARS-CoV-2, and LMICs in general (e.g. Brazil, India). However, it is understandable that there are challenges in accessing comprehensive information from these sources. Another challenge is that most, but not all, of the information presented relates to the number of projects supported rather than the magnitude of the support. The database is also missing information from private companies, including pharma companies, where much research on vaccines, therapeutics and diagnostics is likely to be supported. It is also unclear whether the databases of registered clinical trials have been trawled to identify ongoing research. For these reasons, I am not convinced that it is appropriate to label the paper as a systematic review as it seems to be a review only of what has been accumulated in the database to date.

I recognize that the database is early in its life, but as an ongoing check on completeness it may be useful, in the future, to link published papers on SARS-CoV-2 to the database to see what is not being picked up in the database, acknowledging that it is not infrequently difficult to link a particular paper to a particular research grant.

In the review, projects in the database are linked to WHO Blueprint list of research priorities defined in February 2020. This helps identify areas where there are possible funding gaps. However, there are some limitations in using the database for this purpose. For example, the authors note that there are clear gaps in support for ‘optimal endpoints for clinical trials and core clinical outcomes’ and on ‘ethical considerations for research’. Both of these areas have had considerable attention, the former in the context of treatment and vaccine trials (the authors acknowledge the problems in identifying research that may be embedded in other research undertakings) and much of the ethical work that has been done has not required specific funding.

Despite some of the deficiencies identified above, the generation of the database has been a valuable undertaking, and as more funders come on board it will become even more useful. Similarly, the ongoing systematic review will give a useful summary of what is in the database and will help identifying trends in funding and areas where support has been lacking.

Are the rationale for, and objectives of, the Systematic Review clearly stated? Yes

Are sufficient details of the methods and analysis provided to allow replication by others? Yes

Is the statistical analysis and its interpretation appropriate? Not applicable

Are the conclusions drawn adequately supported by the results presented in the review? Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Nov 2020

Alice Norton, UK Collaborative on Development Research, London, UK

Thank you very much for your helpful comments on our Baseline paper, we are pleased that you believe that this has been a valuable undertaking. We have now updated the review with the latest data in the tracker up to the 15th October and have also taken that opportunity to address some of your comments within the new version of the paper. This continues (in our view) to be the most comprehensive data set on research funded on COVID-19 with now over five thousand projects from 72 funders (all categorised to the WHO R&D Blueprint). We have now provided further details relating to magnitude of funding commitment in addition to numbers of projects in the figures relating to funders and agree that this helps with interpretation. We have noted and agree with the limitations that you highlight regarding the challenges in accessing the full breadth of global research data in this field and we have already clearly acknowledged these limitations. We also agree that the ‘systematic’ terminology may not therefore be fully appropriate for this endeavour and have now instead re-categorised this as a living mapping review. We also agree with your points on the particular sub-priorities in the roadmap which may have received attention outside of newly funded or even repurposed grants, and we have further clarified our discussion of these. We are continuing to expand the global representation of funders in the database and are exploring connections with both clinical trial registrations and outputs (although neither of these are straightforward). We hope that you find this latest version of the paper of renewed interest and relevance.

Competing Interests: No competing interests were disclosed.

Reviewer Report 21 September 2020

https://doi.org/10.21956/wellcomeopenres.17862.r40348

© 2020 Vaughn D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

David Vaughn
Bill and Melinda Gates Foundation, Seattle, WA, USA

This is a well-written report by the UKCDR and GloPID-R on their living systematic review (Project Tracker) of COVID-19 R&D including 1858 projects supported by 25 funders across 102 countries as of 15 July 2020 aligning said R&D efforts with the WHO global research roadmap for COVID-19 R&D published in March 2020. The tracker also identifies research objectives not included in the WHO roadmap (seven new areas) that may influence planning for future pandemics (including future WHO roadmaps). A spin-off of the effort (COVID CIRCLE) focuses on R&D in resource-limited settings.
The Tracker allows the global health community to assess the COVID-19 research portfolio to identify gaps (Animal and environmental research? Clinical trial endpoints and outcomes?) and to reduce duplication (more than 300 vaccines being advanced?); reduction of excessive duplication is important given limited global R&D resources.

The authors are transparent concerning the limitations of the effort. The data is skewed to GloPID-R members. It is heavily UKRI biased. The US NIH, in particular, seems under-represented. Repurposed funded research may be missed. There is limited data from a number of governments (e.g., China as noted by authors) and private sources (e.g., companies, private foundations such as the BMGF, and ethics think tanks). This publication may encourage more LMICs to participate in the accounting.

Is it possible to comment on measured or perceived impacts? Who uses? Is there documentation of times accessed? Is it timely information if the figures are updated only every three months? The group should conduct a survey at the end of the calendar year to see if funders changed direction based upon this effort. Has there been a reduction of duplication? Or, will this be a retrospective of what happened with little real-time impact on what was happening? Shifting of funding to LMICs is one positive example of impact. Again, we will need a later assessment to build upon this baseline review focusing on impact on the pandemic response. Has the scope been too broad?

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Not applicable

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Vaccine development.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Nov 2020

Alice Norton, UK Collaborative on Development Research, London, UK

Thank you very much for your very helpful comments on our baseline paper. We are delighted to now provide a three-month update paper in which the number of projects and funders has greatly expanded over the interval (to over 5 thousand projects from 72 funders). We aim to continue to achieve further geographical cover through ongoing efforts.
to raise the profile of the tracker and source data from further funders. Thank you for your suggestion regarding inclusion of data on use of these data and perceived impact, we have now included reference to this in this three-month update. We will also be undertaking a retrospective consultation on the influence of this work as part of the learning element of COVID CIRCLE in early 2021. We hope that you find this latest version of the paper of renewed interest and relevance and we would also like to highlight the more frequent updates and highlights available on the funding tracker website.

Competing Interests: No competing interests were disclosed.