RESEARCH ARTICLE

Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 1; peer review: 1 approved]

Akira Endo 1,2, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Sam Abbott 1,3, Adam J. Kucharski 1,3, Sebastian Funk 1,3

1Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
2The Alan Turing Institute, London, NW1 2DB, UK
3Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK

Abstract

Background: A novel coronavirus disease (COVID-19) outbreak has now spread to a number of countries worldwide. While sustained transmission chains of human-to-human transmission suggest high basic reproduction number R_0, variation in the number of secondary transmissions (often characterised by so-called superspreading events) may be large as some countries have observed fewer local transmissions than others.

Methods: We quantified individual-level variation in COVID-19 transmission by applying a mathematical model to observed outbreak sizes in affected countries. We extracted the number of imported and local cases in the affected countries from the World Health Organization situation report and applied a branching process model where the number of secondary transmissions was assumed to follow a negative-binomial distribution.

Results: Our model suggested a high degree of individual-level variation in the transmission of COVID-19. Within the current consensus range of R_0 (2-3), the overdispersion parameter k of a negative-binomial distribution was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05-0.2 for $R_0 = 2.5$), suggesting that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%). A joint estimation yielded likely ranges for R_0 and k (95% CrIs: R_0 1.4-12; k 0.04-0.2); however, the upper bound of R_0 was not well informed by the model and data, which did not notably differ from that of the prior distribution.

Conclusions: Our finding of a highly-overdispersed offspring distribution highlights a potential benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of an epidemic, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events.
Keywords
COVID-19, SARS-CoV-2, novel coronavirus, overdispersion, superspreading, branching process

This article is included in the Coronavirus (COVID-19) collection.

Corresponding author: Akira Endo (akira.endo@lshtm.ac.uk)

Author roles: Endo A: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Visualization, Writing – Original Draft Preparation; Abbott S: Validation, Writing – Review & Editing; Kucharski AJ: Supervision, Writing – Review & Editing; Funk S: Methodology, Supervision, Writing – Review & Editing

Competing interests: AE received a research grant from Taisho Pharmaceutical Co., Ltd.

Grant information: SA [210758], AJK [206250] and SF [210758] are supported by the Wellcome Trust. AE is financially supported by The Nakajima Foundation and The Alan Turing Institute.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Endo A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S et al. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 1; peer review: 1 approved]
Wellcome Open Research 2020, 5:67 https://doi.org/10.12688/wellcomeopenres.15842.1

First published: 09 Apr 2020, 5:67 https://doi.org/10.12688/wellcomeopenres.15842.1
Introduction
A novel coronavirus disease (COVID-19) outbreak, which is considered to be associated with a market in Wuhan, China, is now affecting a number of countries worldwide. A substantial number of human-to-human transmission has occurred; the basic reproduction number R_0 (the average number of secondary transmissions caused by a single primary case in a fully susceptible population) has been estimated around 2–3. More than 100 countries have observed confirmed cases of COVID-19. A few countries have already been shifting from the containment phase to the mitigation phase, with a substantial number of locally acquired cases (including those whose epidemiological link is untraceable). On the other hand, there are countries where a number of imported cases were ascertained but fewer secondary cases have been reported than might be expected with an estimated value of R_0 of 2–3.

This suggests that not all symptomatic cases cause a secondary transmission, which was also estimated to be the case for past coronavirus outbreaks (SARS/MERS). High individual-level variation (i.e., overdispersion) in the distribution of the number of secondary transmissions, which can lead to so-called superspreading events, is crucial information for epidemic control. High variation in the distribution of secondary cases suggests that most cases do not contribute to the expansion of the epidemic, which means that containment efforts that can prevent superspreading events have a disproportionate effect on the reduction of transmission.

We estimated the level of overdispersion in COVID-19 transmission by using a mathematical model that is characterised by R_0 and the overdispersion parameter k of a negative binomial branching process. We fit this model to worldwide data on COVID-19 cases to estimate k given the reported range of R_0 and interpret this in the context of superspreading.

Methods
Data source
We extracted the number of imported/local cases in the affected countries (Table 1) from the WHO situation report 38 published on 27 February 2020, which was the latest report of the number of imported/local cases in each country (as of the situation report 39, WHO no longer reports the number of cases stratified by the site of infection). As in the WHO situation reports, we defined imported cases as those whose likely site of infection is outside the reporting country and local cases as those whose likely site of infection is inside the reporting country. Those whose site of infection was under investigation were excluded from the analysis (Estonia had no case with a known site of infection and was excluded). In Egypt and Iran, no imported cases have been confirmed, which cause the likelihood value to be zero; data in these two countries were excluded. To distinguish between countries with and without an ongoing outbreak, we extracted daily case counts from an online resource and determined the dates of the latest case confirmation for each country (as of 27 February).

Model
Assuming that the offspring distributions (distribution of the number of secondary transmissions) for COVID-19 cases are identically- and independently-distributed negative-binomial distributions, we constructed the likelihood of observing the reported number of imported/local cases (outbreak size) of COVID-19 for each country. The probability mass function for the final cluster size resulting from s initial cases is, according to Blumberg et al., given by

$$c(x; s) = P(X = x; s) = \frac{ks}{kx + x - s} \binom{R_0}{x} s^x (1 + \frac{R_0}{k})^{-s-x}. $$

If the observed case counts are part of an ongoing outbreak in a country, cluster sizes may grow in the future. To address this issue, we adjusted the likelihood for those countries with ongoing outbreak by only using the condition that the final cluster size of such a country has to be larger than the currently observed number of cases. The corresponding likelihood function is

$$c_\alpha(x; s) = P(X \geq x; s) = 1 - \sum_{m=0}^{x-1} c(m; s),$$

with a convention $\sum_{m=0}^{-1} c(m; s) = 0$. We assumed that the growth of a cluster in a country had ceased if 7 days have passed since the latest reported case (denoted by set A). We applied the final size likelihood $c(x; s)$ to those countries and $c_\alpha(x; s)$ to the rest of the countries (countries with an ongoing outbreak: B). The total likelihood is

$$L(R_0, k) = \prod_{i \in A} P(X = x_i; s_i) \prod_{i \in B} P(X \geq x_i; s_i).$$

Statistical analysis
Varying the assumed R_0 between 0–5 (fixed at an evenly-spaced grid of values), we estimated the overdispersion parameter k using the likelihood function described above. We used the Markov-chain Monte Carlo (MCMC) method to provide 95% credible intervals (CrIs). The reciprocal of k was sampled where the prior distribution for the reciprocal was weakly-informed half-normal (HalfNormal($\sigma = 10$)). We employed the adaptive hit-and-run Metropolis algorithm and obtained 500 thinned samples from 10,000 MCMC steps (where the first half of the chain was discarded as burn-in).

We also performed a joint-estimation of R_0 and k by the MCMC method (with a weakly-informed normal prior $N(\mu = 3, \sigma = 5)$ for R_0 and the weakly-informed half-normal prior (HalfNormal($\sigma = 10$)) for the reciprocal of k.

Statistical analysis was implemented in R-3.6.1 with a package [LaplacesDemon]-16.1.1. The reproducible code for this study is available on GitHub.
Table 1. The number of confirmed COVID-19 cases reported (as of 27 February 2020).

<table>
<thead>
<tr>
<th>Country</th>
<th>Total cases</th>
<th>Imported cases</th>
<th>Local cases</th>
<th>Site of infection unknown</th>
<th>Deaths</th>
<th>Latest date of case confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
<td>1766</td>
<td>17</td>
<td>605</td>
<td>1144</td>
<td>13</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Japan</td>
<td>186</td>
<td>39</td>
<td>129</td>
<td>18</td>
<td>3</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Singapore</td>
<td>93</td>
<td>24</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Australia</td>
<td>23</td>
<td>20</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Malaysia</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Vietnam*</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>13/02/2020</td>
</tr>
<tr>
<td>Philippines*</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>05/02/2020</td>
</tr>
<tr>
<td>Cambodia*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30/01/2020</td>
</tr>
<tr>
<td>Thailand</td>
<td>40</td>
<td>23</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>India*</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03/02/2020</td>
</tr>
<tr>
<td>Nepal*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24/01/2020</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/01/2020</td>
</tr>
<tr>
<td>USA</td>
<td>59</td>
<td>56</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Canada</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Brazil</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Italy</td>
<td>400</td>
<td>231</td>
<td>276</td>
<td>12</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Germany</td>
<td>21</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>France</td>
<td>18</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>UK</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Spain</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Croatia</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Finland</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Israel</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Russia*</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31/01/2020</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Belgium*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>04/02/2020</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Estonia†</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Georgia</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>North Macedonia</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Norway</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Iran†</td>
<td>141</td>
<td>28</td>
<td>113</td>
<td>22</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Kuwait</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Bahrain</td>
<td>33</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>UAE</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Iraq</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Oman</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Lebanon</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27/02/2020</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>26/02/2020</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24/02/2020</td>
</tr>
<tr>
<td>Egypt††</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14/02/2020</td>
</tr>
<tr>
<td>Algeria</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25/02/2020</td>
</tr>
</tbody>
</table>

* Countries considered to be without an ongoing outbreak
† Countries excluded from analysis
Proportion responsible for 80% of secondary transmissions

Using the estimated R_0 and k, we computed the estimated proportion of infected individuals responsible for 80% of the total secondary transmissions. Such proportion $p_{80\%}$ is given as

$$1 - p_{80\%} = 1 - \int_0^\infty \text{NB}\left(x; \frac{k}{R_0 + k} \right) dx,$$

where X satisfies

$$1 - 0.8 = \int_0^X \frac{1}{R_0} \text{NB}\left(x; \frac{k}{R_0 + k} \right) dx.$$

Here, $\text{NB}(x; k/R_0 + k)$ represents the probability mass of a negative-binomial distribution with a mean R_0 and an overdispersion parameter k. This calculation is eased by the following rearrangement:

$$\frac{1}{R_0} \int_0^X \frac{1}{x} \text{NB}\left(x; \frac{k}{R_0 + k} \right) dx = \int_0^{X - 1} \text{NB}\left(x; \frac{k}{R_0 + k} \right) dx.$$

We computed $p_{80\%}$ for each MCMC (Markov-chain Monte Carlo) sample to yield median and 95% CrIs.

Model comparison with a Poisson branching process model

To test if our assumption of overdispersed offspring distribution better describes the data, we compared our negative-binomial branching process model with a Poisson branching process model, which assumes that the offspring distribution follows a Poisson distribution instead of negative-binomial. Since a negative-binomial distribution converges to a Poisson distribution as $k \to \infty$, we approximately implemented a Poisson branching process model by fixing k of the negative-binomial model at 10^{10}. We compared the two models by the widely-applicable Bayesian information criterion (WBIC)14.

Simulation of the effect of underreporting

We used simulations to investigate potential bias caused by underreporting, one of the major limitations of the present study. Underreporting in some countries may be more frequent than others because of limited surveillance and/or testing capacity, causing heterogeneity in the number of cases that could have affected the estimated overdispersion. See Extended data (Supplementary materials)15 for detailed methods.

Results

Our estimation suggested substantial overdispersion ($k << 1$) in the offspring distribution of COVID-19 (Figure 1A and Figure 2). Within the current consensus range of R_0 (2–3), k was estimated to be around 0.1 (median estimate 0.1; 95% CrI: 0.05–0.2 for $R_0 = 2.5$). For the R_0 values of 2–3, the estimates suggested that 80% of secondary transmissions may have been caused by a small fraction of infectious individuals (~10%; Figure 1B).

The result of the joint estimation suggested the likely bounds for R_0 and k (95% CrIs: R_0: 1.4–12; k: 0.04–0.2). The upper bound of R_0 did not notably differ from that of the prior distribution (=13.5), suggesting that our model and the data only informed the lower bound of R_0. This was presumably because the contribution of R_0 to the shape of a negative-binomial distribution is marginal when k is small (Extended data, Figure S1)15. A scatterplot (Extended data, Figure S2)15 exhibited a moderate correlation between R_0 and k (correlation coefficient -0.4).

Model comparison between negative-binomial and Poisson branching process models suggested that a negative-binomial model better describes the observed data; WBIC strongly supported the negative-binomial model with a difference of 11.0 (Table 2). The simulation of the effect of underreporting suggested that possible underreporting is unlikely to cause...

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{MCMC estimates given assumed R_0 values. (A) Estimated overdispersion parameter for various basic reproduction number R_0. (B) The proportion of infected individuals responsible for 80% of the total secondary transmissions ($p_{80\%}$). The black lines show the median estimates given fixed R_0 values and the grey shaded areas indicate 85% CrIs. The regions corresponding to the likely range of R_0 (2–3) are indicated by colour.}
\end{figure}
Discussion

Our results suggested that the offspring distribution of COVID-19 is highly overdispersed. For the likely range of R_0 of 2–3, the overdispersion parameter k was estimated to be around 0.1, suggesting that the majority of secondary transmission may be caused by a very small fraction of individuals (80% of transmissions caused by ~10% of the total cases). These results are consistent with a number of observed superspreading events observed in the current COVID-19 outbreak and also in line with the estimates from the previous SARS/MERS outbreaks.

The overdispersion parameter for the current COVID-19 outbreak has also been estimated by stochastic simulation and from contact tracing data in Shenzhen, China. The former study did not yield an interpretable estimate of k due to the limited data input. In the latter study, the estimates of R_0 (the effective reproduction number) and k were 0.4 (95% confidence interval: 0.3–0.5) and 0.58 (0.35–1.18), respectively, which did not agree with our findings. However, these estimates were obtained from pairs of cases with a clear epidemiological link and therefore may have been biased (downward for R_0 and upward for k) if superspreading events had been more likely to be missed during the contact tracing.

Although cluster size distributions based on a branching process model are useful in inference of the offspring distribution from limited data, they are not directly applicable to an ongoing outbreak because the final cluster size may not yet have been observed. In our analysis, we adopted an alternative approach which accounts for possible future growth of clusters to minimise the risk of underestimation. As of 27 February 2020, the majority of the countries in the dataset had ongoing outbreaks (36 out of 43 countries analysed, accounting for 2,788 cases of the total 2,816). Even though we used the case counts in those countries only as the lower bounds of future final cluster sizes, which might have only partially informed of the underlying branching process, our model yielded estimates with moderate uncertainty levels (at least sufficient to suggest that k may be below 1). Together with the previous finding suggesting that the overdispersion parameter is unlikely to be biased downwards, we believe our analysis supports the possibility of highly-overdispersed transmission of COVID-19.

A number of limitations need to be noted in this study. We used the confirmed case counts reported to WHO and did not account for possible underreporting of cases. Heterogeneities between countries in surveillance and intervention capacities, which might also be contributing to the estimated overdispersion, were not considered (although we investigated such effects by simulations; see Extended data, Figure S3).

Reported cases whose site of infection classified as unknown, which should in principle be counted as either imported or local cases, were excluded from analysis. Some
cases with a known site of infection could also have been misclassified (e.g., cases with travel history may have been infected locally). The distinction between countries with and without ongoing outbreak (7 days without any new confirmation of cases) was arbitrary. However, we believe that our conclusion is robust because the distinction does not change with different thresholds (4–14 days), within which the serial interval of SARS-CoV-2 is likely to fall.\(^{22,23}\)

Our finding of a highly-overdispersed offspring distribution suggests that there is benefit to focusing intervention efforts on superspreading. As most infected individuals do not contribute to the expansion of transmission, the effective reproduction number could be drastically reduced by preventing relatively rare superspreading events. Identifying characteristics of settings that could lead to superspreading events will play a key role in designing effective control strategies.

Data availability

Source data

This project contains the following source data taken from references\(^{10}\) and\(^{11}\):

- `bycountries_27Feb2020.csv`. (Imported/local case counts by country from WHO situation report \(^{38}\).
- `dailycases_international_27Feb2020.csv`. (Daily case counts by country from COVID2019.app\(^{11}\).

Extended data

This project contains the following extended data

- `supplementarymaterials.pdf`. (Supplementary material: Estimating the amount of superspreading using outbreak sizes of COVID-19 outside China.)
- `figS1.tif`. (Figure S1. Offspring distributions for different \(R_0\) values. The probability mass functions of negative-binomial distributions are shown. The overdispersion parameter \(k\) is fixed at 0.1.)
- `figS2.tif`. (Supplementary Figure 2. Scatter plot of MCMC samples from a joint estimation of \(R_0\) and \(k\). The dotted line represents the threshold \(R_0 = 1\).)
- `figS3.tif`. (Supplementary Figure 3. Estimates of overdispersion from simulations with underreporting. (A) Maximum-likelihood estimates (MLEs) of overdispersion parameter \(k\) with different distributions for country-specific reporting probability \(q_i\).)

assumed to be reported at probability \(q_i\) in country \(i\). The blue dotted line indicates the true value \(k = 0.1\). (B) MLEs where imported cases were assumed to be fully reported and local cases were reported at probability \(q_i\). (C) Probability density functions for beta distributions used in the simulation.)

Code availability

The reproducible code is available at: https://github.com/akira-CMMID/COVID19_clustersize

Archived code at time of publication: https://doi.org/10.5281/zenodo.374174

License: MIT.

Acknowledgements

This study was greatly motivated and inspired by the analysis published online by Kyra Grantz, C. Jessica E. Metcalf and Justin Lessler (https://hopkinsidd.github.io/nCoV-Sandbox/DispersionExploration.htm). We thank the authors for insightful inputs and contribution.

Members of the Centre for Mathematical Modelling of Infectious Diseases (CMMID) COVID-19 Working Group (random order):

CMMID COVID-19 working group funding statements:

- Rosalind M Eggo (HDR UK (MR/S003975/1)), Billy J Quilty (National Institute for Health Research (NIHR) (16/137/109)), Kevin van Zandvoort (Elrha’s Research for Health in Humanitarian Crises (R2HC) Programme), James D Munday (Wellcome Trust (210758/Z/18/Z)), Stefan Flasche (Wellcome Trust (208812/Z/17/Z)), Alicia Rosello (NIHR (PR-O/D-1017-20002)), Mark Jit (Gates (INV-003174), NIHR (16/137/109)), Amy Gimma (RCUK/ESRC (ES/P010873/1)), Yang Liu (Gates (INV-003174), NIHR (16/137/109)), Kiesha Prem (Gates (INV-003174)), Hamish Gibbs (NIHR (ITCRZ 03010)), Charlie Diamond (NIHR (16/137/109)), Christopher I Jarvis (RCUK/ESRC (ES/P010873/1)), Nicholas Davies (NIHR (HPRU-2012-10096)), Fiona Sun (NIHR EPIC grant (16/137/109)), Joel Hellewell (Wellcome Trust (210758/Z/18/Z)), Timothy W Russell (Wellcome Trust (206250/Z/17/Z)), Thibaut Jombart (RCUK/ESRC (ES/P010873/1), UK PH RST, NIHR HPRU Modelling Methodology), Samuel Clifford (Wellcome Trust (208812/Z/17/Z)), Petra Klepac (Gates (INV-003174))
References

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 28 April 2020

https://doi.org/10.21956/wellcomeopenres.17377.r38418

© 2020 Wang L. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Lin Wang
Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, Institut Pasteur, Paris, France

In this manuscript, Endo et al. estimated the overdispersion of COVID-19 transmission outside of China. The authors collected the number of imported and local cases in each affected country from the World Health Organization situation report. Using likelihood-based inference, they fitted a negative-binomial or Poisson offspring distribution to the empirical data. In summary, this study is scientifically sound and well presented. I only have a few suggestions.

1. The authors may wish to add one or two sentences about the convergence of MCMC chains, such as the diagnosis used.

2. If I understood correctly, a thinning interval of 10 is used to sample the raw chains. With this thinning interval, is the auto-correlation sufficiently small?

3. As to the statistical model, it seems that the authors assumed that all imported cases arrived and triggered the local epidemic at the same time. If the cases arrived at different time points, will the inferred results be different? This manuscript might be useful to understand the effect of continuous seeding: Characterizing the dynamics underlying global spread of epidemics.

References

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease modeling, epidemiology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.