Electronic data capture for large scale typhoid surveillance, household contact tracing, and health utilisation survey: Strategic Typhoid Alliance across Africa and Asia [version 1; peer review: 1 approved, 3 approved with reservations]

Deus Thindwa1,2, Yama G. Farooq3, Mila Shakya4, Nirod Saha5, Susan Tonks3, Yaw Anokwa6, Melita A. Gordon1,2,7, Carl Hartung6, James E. Meiring3, Andrew J. Pollard3, Robert S. Heyderman2,8, The Strategic Typhoid alliance across Africa and Asia consortium

1Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, London, UK
2Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
3Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford and the National Institute for Health, Oxford, UK
4Oxford University Clinical Research Unit-Patan Academy of Health Sciences, Patan, Nepal
5International Centre for Diarrhoeal Diseases Research., Dhaka, Bangladesh
6Nafundi, Seattle, Washington, USA
7Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
8Division of Infection and Immunity, University College London, London, UK

First published: 09 Apr 2020, 5:66
Latest published: 09 Apr 2020, 5:66
https://doi.org/10.12688/wellcomeopenres.15811.1

Open Peer Review

Reviewer Status

<table>
<thead>
<tr>
<th>Invited Reviewers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 1</td>
<td>report</td>
<td>report</td>
<td>report</td>
<td>✔️</td>
</tr>
</tbody>
</table>

1. Sylvester Maleghemi, World Health Organization, Port Harcourt, Nigeria
2. Jillian S Gauld, Institute for Disease Modeling, Seattle, USA
3. Michael Sikorski, University of Maryland School of Medicine, Baltimore, USA
4. Myron Levine, University of Maryland,
interval: 24.1, 24.9) errors on numeric and text fields respectively. These values meet standard quality threshold of 50 errors per 10,000 data points. The EDC's total variable cost was estimated at US$13,791.82 per site.

In conclusion, the EDC is robust, allowing for timely and high-volume accurate data collection, and could be adopted in similar epidemiological settings.

Keywords
Africa, Asia, Electronic data capture, Open Data Kit, Typhoid fever.
Abbreviations
EDCs: Electronic data capture systems; STRATAA: Strategic Typhoid alliance across Africa and Asia consortium; ODK: Open Data Kit; GPS: global positioning system; eCRF: electronic census report form; SQL: Structured Query Language; CI: Confidence Intervals; US$: United States dollar; SC DM: Society of Clinical Data Management.

Methods
Implementation
The census component of the STRATAA study aimed to collect demographics from approximately 100,000 individuals, of all ages, in each of the three sites, to form the sampling frame for subsequent sub-studies. More details of the STRATAA study design and participants have previously been described11. In brief, the three sites, one in each country, were selected based on high known burden of enteric fever, differing epidemiological patterns and previous ability to deliver paper-based studies of high participant volume and logistical complexity.

An electronic census report form (eCRF), uniform to all sites, was developed through a structured iterative process. An eCRF comprised household- and individual-level questions. The eCRF data fields reflected a range of data types including integers to capture census team identifier, interviewer identifier, phone numbers of key respondent and older household members, household member number, and age; decimal to capture GPS points; alphanumeric to capture household unique identifier (barcode); texts to capture ward/traditional authority name, community/district name, physical address, respondent name, respondent relationship to head of household, respondent position in the household, head of household name, household member name, household member tribe/ethnicity, household member relationship to head, marital status, spouse name, education levels, employment status, mother’s name, and father’s name; characters to capture study site, household occupancy status, consent status, study information access status, sex, and school attendance status; and dates to capture household visit date and date of birth of each household member11.

To ensure ultimate generation of error-free data, the eCRF data fields were designed with quality control tools, such as dropdown menus, range checks, choice fields, skip patterns, required checks, double-data entry checks, systematic auto-numbering, preloading, and looping. However, due to other internal and external limitations of the EDC, we further built external database queries based on the Structured Query Language (SQL) to track potential data entry errors that might have arisen beyond EDC’s control. External SQL queries were aimed to expose persistent error sources which included duplication of study household identifiers (barcode); duplication of entire individual demographics; barcode decoding errors during scan; illogical ages or date of births of children relative to parents; incorrect household visit dates relative to tablet system date; misspellings of traditional authority names/ward numbers, physical addresses, respondent names, and household members names; missing GPS points; inaccurate GPS points relative to the household; and mismatches between community names and GPS points. After running the external SQL queries on the census database table and identifying the errors, each correction of an error by the data officer triggered an automatic log to an audit-trail table with entries (table’s column names) that included table name with error, action on an error (update, insertion, or deletion), individual/household barcode identifier with an error, field name

Introduction
Use of electronic data capture systems (EDCs) for health research has increased since Apple’s launch of the first handheld device in 19931; and for observational studies and clinical trials is beginning to replace paper-based data collection methods. Paper-based systems have the advantage that they provide a hard copy source document but are characterised by high inaccuracies, substantial omissions, longer data turnaround time, longer data entry time, and high incremental costs both during the data collection and subsequent entry into an electronic database2–4. The advantages of EDC include built-in global positioning system (GPS) locator that automatically capture geographical coordinates thus minimizing transcription errors from external GPS locators; password-locked tablets and data encryption that maintain participant data confidentiality; required checks that prevent data omissions; range checks and data type checks that prevent typographical errors; skip patterns that provide logical responses; barcode technology that automates entry of unique identification; timestamps that provide a means to monitor work rate; and internet connectivity that ensures availability of real-time data5–7. Despite these benefits, there is limited description of the performance of EDCs for large-scale or multisite surveys in low and middle-income countries.

Each year, an estimated 9.9–24.2 million typhoid fever cases occur from low- and middle-income countries resulting in approximately 75,000–208,000 deaths8,9. However, although essential to build a public health case for disease control efforts such as vaccination and provision of clean water, sanitation and hygiene, obtaining reliable estimates for the burden of disease at national and sub-national level is difficult10. This requires collection of high quality field demographic, mapping, epidemiological, and clinical and laboratory data at scale from both hospital and community-based survey studies11. Interestingly, the collection of such quality data is hindered by complexities of dilapidated health facilities, overcrowding, unstructured housing or slums, and illiteracy12.

We present an open source-based EDC, designed to overcome data quality complexities, and evaluate the efficiency, quality, and costs of the EDC by measuring volume, time, accuracy, and material costs using multisite census data collected from sub-Saharan Africa and Asia13. The EDC was developed and implemented within the Strategic Typhoid alliance across Africa and Asia (STRATAA), a comprehensive programme which is assessing population dynamics and epidemiology of typhoid fever in Malawi, Bangladesh and Nepal to inform design of vaccine and public health interventions.
with an error, old value, new value, timestamp, and a user’s name modifying an error. This generated a single row in an audit-trail table for each single error that was modified in the original census table. Errors corresponding to GPS points were specifically identified through sub-setting and importing GPS points (longitude, latitude, and altitude) from the census table into Google Earth Pro software v7.3.2 (Google LLC, Mountain View, California, USA) as a keyhole markup language file, and then mapping the GPS points on the overlay of community boundaries’ and households’ satellite images. Once a GPS point was not mapped within 5 meters at 10% accuracy of the household or within the community boundary, it was considered a mapping error, and corrected through remapping in the field and updating it in the census table thereby triggering an audit-trail table error record. All the other errors exposed by the external SQL queries were investigated thoroughly in the field before corrections could be applied to the census table and subsequently auto-logged into the audit-trail table. The maximum number of visits to the household prior declaring the household vacant or errors permanently unresolved was twice. We show the flow diagram of the eCRF in (Figure 1), whereas the technical details of the extensible markup language code used to create an eCRF, and the SQL code used to create the audit-trail table and triggers to the audit-trail table have been publicly shared through GitHub (GitHub Inc; San Francisco, California, USA)\(^5\).

Operation

We designed a uniform EDC using combined open-source tools; Open Data Kit (ODK) software v1.4.16 (Nafundi, Seattle, Washington, USA)\(^6\)-\(^8\), and MySQL relational database management system v8.0.1 (Oracle Corporation, Redwood city, California, USA)\(^9\). The eCRF was customized in ODK Collect and uploaded onto Android-based Asus ZenPad (AsusTek Computer Inc., Taipei, Taiwan), and Samsung (Samsung group, Seoul, South Korea) tablets. Then data were collected in the field during the day and temporarily saved in the tablet’s memory. At the end of each day, tablets were returned to the base STRATAA data office and data were uploaded from the tablet’s memory to ODK Aggregate server via a secure wireless network technology. Tablets were then charged overnight at the base data office in Seoul, South Korea) tablets. Then data were collected in the field before corrections could be applied to the census table and subsequently auto-logged into the audit-trail table. The maximum number of visits to the household prior declaring the household vacant or errors permanently unresolved was twice. We show the flow diagram of the eCRF in (Figure 1), whereas the technical details of the extensible markup language code used to create an eCRF, and the SQL code used to create the audit-trail table and triggers to the audit-trail table have been publicly shared through GitHub (GitHub Inc; San Francisco, California, USA)\(^5\).

Pre-census time, costs, and training

We estimated the error rates, after running external SQL queries but prior to data cleaning, by dividing the total number of errors observed by the total number of data points (≈ all expected errors). A data point was defined as a discrete unit of information that could possibly be obtained from each member of the population after administering an eCRF e.g. If an eCRF had (n) number of unique questions, with each question corresponding to a variable (X), for (N) number of respondents, then the total data points for eCRF would be \(\sum X(X,N)\). In our calculations, data points for household- and individual-level variables were calculated separately and summed up. The reason was that household-level questions were answered by a key informant (head of household or respondent ≥ 18 years old), while individual-level questions were hypothetically answered by all household members (represented by a key informant). Exact binomial confidence intervals were used to estimate error rates. Data entry speed and accuracy by fieldworkers were combined into a single merit in order to measure their performance\(^9\). For each fieldworker, we standardized the data entry speeds (z\(_e\)) and errors (z\(_s\)), and assigned more weight to data entry speed (60%) than errors (40%) given the background that the EDC was robustly developed to prevent most data entry errors, thus, speed was more important. The final data entry speed-accuracy trade-off was calculated using the formula (SAT = −z\(_s\) / 0.6 − z\(_e\) / 0.4) where z\(_s\) = ((s − μ)/δ\(_s\)) and z\(_e\) = ((e − μ)/δ\(_e\)) (s) is the total speed for all data entries per field worker, (μ) is the mean speed for all fieldworkers, (δ) is the speed standard deviation, (e) is the total number of errors per field

Ethics approval and consent to participate. Ethical approval was obtained from the Malawi National Health Sciences Research Committee, 15/S/1599; Bangladesh ICDDR,B Institutional Review Board, PR-15119; Nepal Health Research Council, 306/2015; and Oxford Tropical Research Ethics Committee, 39-15. Following extensive sensitisation and engagement with community and traditional leaders, and community health-workers, the key informant from each household provided a verbal informed consent, to enumerate the household, which was documented in the eCRF.

Statistical analysis and visualization

We estimated time and costs required to attain the following census-related materials or complete census activities; tablets (including screen protectors, and protective covers), desktop server computers, network devices, barcodes, development of eCRF, training of field workers, replacement of broken tablets, and backpacks. We did not assess other operational costs because of uncertainty e.g. electric power to servers, charging tablets, and electronic data synchronization. We trained fieldworkers and assessed their suitability to conduct census by administering a practical mock test and then selecting best performers. Moreover, five weeks post-census implementation, we retrained fieldworkers based on calculated individual performances on data quality and data collection speed.
Figure 1. Electronic census report form flowchart.
Figure 2. Electronic data capture system for a multisite study. MySQL-defined databases b_strataa, k_strataa, and d_strataa have homogeneous structures (*) e.g. table columns, data types, triggers or views. Data from MySQL-defined database table are exported back to Android-based tablet enabling data preloading for subsequent sub-studies (P). Homogeneous databases across sites merge enabling multisite data analyses (H).

worker, \(\mu \) is the mean error for all fieldworkers, and \(\delta \) is the error standard deviation. In addition, we used Wilcoxon Signed-Rank Test for paired samples pre- versus post-retraining in order to measure any statistical difference in the number of errors committed, and determine whether retraining the fieldworkers helped improve accuracy. All statistics and plots were conducted in R v3.4.0\(^1\). eCRF flowchart and EDC diagram were created using www.draw.io (JGraph, London, England) v6.4.2.

An earlier version of this article can be found on the pre-print server for health sciences, MedRxiv\(^2\).

Results
Data collection volume, time and accuracy
We recorded demographics of 308,348 individuals from 80,851 households in three countries between June 2016 and October 2016; 97,410 individuals and 22,364 households from Malawi, 100,207 and 32,368 from Nepal, and 110,731 and 26,119 from Bangladesh. Completeness of household demographics enumeration were 94.2%, 75.6% and 79.2% for Malawi, Nepal and Bangladesh, respectively, relative to background household count. The average number of weeks for enumeration was 14.7 (range, 13–16) using 20, 25 and 20 field workers from Malawi, Nepal and Bangladesh, respectively. Overall, 21.7 errors (95% confidence interval: 21.4, 22.0) per 10,000 data points were found; 15.9 errors (95% confidence interval: 15.4, 16.4), 34.2 errors (95% confidence interval: 33.5, 34.9), and 14.6 errors (95% confidence interval: 14.2, 15.0) per 10,000 data points from Malawi, Nepal and Bangladesh, respectively. Of the 17,707 errors documented from all sites, the majority 12,740 (72.0%) occurred on text fields compared to numeric fields 3,868 (21.8%). In addition, 1,099 (6.2%) errors occurred as duplicate records.
Table 1. Census Data Collection Time, Volume and Accuracy in Three Typhoid Endemic Sites, 2016.

<table>
<thead>
<tr>
<th>Study site</th>
<th>Time period of data collection</th>
<th>Total households</th>
<th>Total individuals</th>
<th>Number of errors*</th>
<th>Number of data points</th>
<th>Errors per 10,000 data points</th>
<th>95% CI **</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites</td>
<td>Overall</td>
<td>14.7 weeks (13–16)</td>
<td>80,851</td>
<td>308,348</td>
<td>17,707</td>
<td>21.7</td>
<td>21.4, 22.0</td>
</tr>
<tr>
<td></td>
<td>Numeric</td>
<td>14.7 weeks (13–16)</td>
<td>80,851</td>
<td>308,348</td>
<td>3,868</td>
<td>13.0</td>
<td>12.6, 13.5</td>
</tr>
<tr>
<td></td>
<td>Text</td>
<td>14.7 weeks (13–16)</td>
<td>80,851</td>
<td>308,348</td>
<td>12,740</td>
<td>24.5</td>
<td>24.1, 24.9</td>
</tr>
<tr>
<td>Malawi §</td>
<td>Overall</td>
<td>Jul 2016 – Oct 2016</td>
<td>22,364</td>
<td>97,410</td>
<td>3,991</td>
<td>15.9</td>
<td>15.4, 16.4</td>
</tr>
<tr>
<td></td>
<td>Numeric †</td>
<td>Jul 2016 – Oct 2016</td>
<td>22,364</td>
<td>97,410</td>
<td>900</td>
<td>9.9</td>
<td>9.3, 10.6</td>
</tr>
<tr>
<td></td>
<td>Text †</td>
<td>Jul 2016 – Oct 2016</td>
<td>22,364</td>
<td>97,410</td>
<td>2,291</td>
<td>14.2</td>
<td>13.7, 14.8</td>
</tr>
<tr>
<td>Nepal §</td>
<td>Overall</td>
<td>May 2016 – Sep 2016</td>
<td>32,368</td>
<td>100,207</td>
<td>9,522</td>
<td>34.2</td>
<td>33.5, 34.9</td>
</tr>
<tr>
<td></td>
<td>Numeric †</td>
<td>May 2016 – Sep 2016</td>
<td>32,368</td>
<td>100,207</td>
<td>2,171</td>
<td>21.2</td>
<td>20.3, 22.1</td>
</tr>
<tr>
<td></td>
<td>Text †</td>
<td>May 2016 – Sep 2016</td>
<td>32,368</td>
<td>100,207</td>
<td>7,131</td>
<td>40.5</td>
<td>39.6, 41.5</td>
</tr>
<tr>
<td>Bangladesh §</td>
<td>Overall</td>
<td>Jun 2016 – Aug 2016</td>
<td>26,119</td>
<td>110,731</td>
<td>4,194</td>
<td>14.6</td>
<td>14.2, 15.0</td>
</tr>
<tr>
<td></td>
<td>Numeric †</td>
<td>Jun 2016 – Aug 2016</td>
<td>26,119</td>
<td>110,731</td>
<td>797</td>
<td>7.7</td>
<td>7.2, 8.23</td>
</tr>
<tr>
<td></td>
<td>Text †</td>
<td>Jun 2016 – Aug 2016</td>
<td>26,119</td>
<td>110,731</td>
<td>3,318</td>
<td>18.1</td>
<td>17.5, 18.7</td>
</tr>
</tbody>
</table>

* Persistent error sources included duplication of household identifiers (barcodes); duplication of entire individual demographics; incorrect barcode decoding during scan; illogical ages or date of births of children relative to parents; incorrect household visit dates relative to tablet system date; misspellings of traditional authority names/ward numbers, physical addresses, respondent names, household members’ names; missing GPS points; inaccurate GPS points relative to the household; and mismatches between community names and GPS points. Duplicates resulted in 800 records being deleted in Malawi, 220 in Nepal, and 79 in Bangladesh.

† Includes text, character, and date data types.

§ Number of census field workers for Malawi (20), Nepal (25), and Bangladesh (20).

** CI: Confidence Interval estimated by binomial (Clopper-Pearson) ‘exact’ method based on the error distribution.

(e.g. either by enumerating a household or any of its members at least twice) (Table 1).

Of all the data entry errors observed during enumeration period, 2,611 (65.4%), 6,265 (65.8%) and 3,013 (71.8%) were, respectively, committed in Malawi, Nepal and Bangladesh prior to fieldworkers’ retraining. Moreover, there were fewer errors observed after retraining of fieldworkers compared to pre-retraining, and the differences were statistically significant in Malawi (W = 5.5, P < 0.001), Nepal (W = 19.5, P < 0.001), and Bangladesh (W = 0, P < 0.001) (Figure 3).

Time and cost of census materials

The time required to attain each material or complete each activity in preparation for census implementation varied by study site, ranging from 2 to 60 days. The most time-consuming activity was the development and customization of eCRF, which was completed in 60 days collectively. This was followed by the procurement of tablets and backpacks, which were acquired in between 7 and 60 days. In addition, we also procured and designed household identifier (barcode) stickers in between 7 and 21 days. Replacement of malfunctioned tablets reported by each study was accomplished within 30 days. We extensively trained our study fieldworkers for up to 5 days focussing on the study protocol, practical aspect of completing an eCRF, and community engagement skills. Selection of potential fieldworkers to join the study team was sorely based on successful completion of the training. Computer servers and network devices to enable data storage and transfers from tablets were pre-existing in Malawi and Bangladesh, and newly acquired in Nepal within 30 days (Table 2).

The major variable cost was incurred by customization of eCRF for use in ODK Collect for a total of US$9,000 for all sites, followed by procurement of 27 tablets at a variable cost of US$5,407.02. Other prominent variable costs included procurement of a desktop server (at US$1,523.21), training 27 field workers to use an eCRF and in field practices (at US$1,479.60), procurement and shipment of 27 backpacks (at US$1,277.91) and 1,500 barcode sheets (at US$720.00), replacement of a malfunctioned tablet (at...
Table 2. Time and costs attainment prior to implementation of an electronic data capture system in three typhoid endemic sites, 2016.

<table>
<thead>
<tr>
<th>Material or activity**</th>
<th>Time to attain item or complete activity varied by site</th>
<th>Number of units required (Range)</th>
<th>Unit cost (US$)*</th>
<th>Variable cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Days</td>
<td>Unit</td>
<td>(X_1 - X_2)</td>
<td>(Y)</td>
</tr>
<tr>
<td>Tablets (including screen protectors and protective cover)§</td>
<td>7–60</td>
<td>Tablet</td>
<td>27 – 42</td>
<td>200.26</td>
</tr>
<tr>
<td>Desktop server computers§</td>
<td>0–30</td>
<td>Computer</td>
<td>1 – 4</td>
<td>1,523.21</td>
</tr>
<tr>
<td>Network devices§</td>
<td>0–30</td>
<td>Router</td>
<td>1 – 4</td>
<td>183.82</td>
</tr>
<tr>
<td>Barcodes</td>
<td>7–21</td>
<td>Sheet</td>
<td>1,500 – 2,530</td>
<td>0.48</td>
</tr>
<tr>
<td>Electronic census report form (eCRF) development and customization†</td>
<td>60</td>
<td>eCRF</td>
<td>1 – 3</td>
<td>3,000.00</td>
</tr>
<tr>
<td>Training field workers</td>
<td>2–5</td>
<td>Field worker</td>
<td>27 – 37</td>
<td>56.82</td>
</tr>
<tr>
<td>Replacement of malfunctioned tablets</td>
<td>7–30</td>
<td>Tablet</td>
<td>1 – 3</td>
<td>200.26</td>
</tr>
<tr>
<td>Backpacks</td>
<td>7–60</td>
<td>Backpack</td>
<td>27 – 42</td>
<td>47.33</td>
</tr>
</tbody>
</table>

* Average unit cost estimated in 2016 across all study sites.
† Only 1 uniform eCRF was developed for 3 sites, for purposes of calculations, we divide the total cost by 3.
§ Some tablets already existed in other sites. Similarly, network devices and computer servers pre-existed in Malawi, Bangladesh, and a central coordinating site (Oxford Vaccine Group) but not in Nepal.
** Excludes costs of electric power to servers, charging tablets and data synchronization because of uncertainty.

US$ United States dollar currency.
US$200.26) and procurement of a network router (at $183.82). The total variable cost for the EDC was US$13,791.82 per site (Table 2).

Discussion
In this study, we have developed and implemented an EDC which allows high volume of data collection over short time periods, high data accuracy, 12-hourly updated data access, and quality checking for decision making. Additionally, the EDC is robust, allowing for automated reports generation, scalability and could be adaptable to other epidemiological settings. Finally, the total variable cost of the EDC’s pre-census materials and activities, was minimal relative to paper-based data collection methods from similar settings.

Data were collected by largely secondary school level only fieldworkers receiving 1 week of training and a day of retraining, and although the learning curve of using an eCRF in ODK Collect on Android-based tablets was steep in the first 5 weeks of field work, high volume and fairly accurate data were recorded (Figure 3 and Figure 4). The data accuracy of ~0.22% errors (21.7 errors per 10,000 data points) reported in this study meets the acceptable quality threshold of 50 errors per 10,000 data points recommended by the Society of Clinical Data Management (SCDM, McLean, Virginia, USA). The highly accurate EDC data in this study is comparable to EDC data accuracies reported by the chronic disease research in South Africa (0.17%) and maternal health survey in Burkina Faso (0.24%)\(^2\). However, our EDC data accuracy is superior to EDC data accuracies reported by the maternal health (2.8%) and neglected tropic disease surveys (5.2%) in Ethiopia, the bloodstream infections study in Zanzibar (1.0%) and the tuberculosis program in India (4.2%)\(^2\). Moreover, our EDC data are more accurate in comparison to data reported from paper-based studies of maternal health (1.1%) and neglected tropical disease (6.2%) surveys in Ethiopia, bloodstream infections study in Zanzibar (7.0%), chronic disease research in South Africa (0.73%), and randomized controlled trial in Fiji (20.8%)\(^2\)–\(^4\),\(^7\),\(^25\). As with previous studies\(^2\),\(^23\),\(^28\), text fields of this eCRF generated more errors than numeric fields, and suggest that such errors could be prevented in eCRF designs by minimizing the use of text fields through coding of text responses or leaving out insignificant text responses completely. The accuracy variations between EDCs are probably due to robustness of the EDC design in terms of error proofing. Robustness in the design is likely to depend on the limitations of software and hardware, and technical know-how of developers. Unlike the EDC and paper-based methods used in a similarly setting\(^2\), our EDC synchronized study data updates at least every 12 hours post-data collection in order to provide recent data accessibility for decision making; Rapid accessibility to recent

![Figure 4. Speed and accuracy trade-off before and after retraining of fieldworkers, 2016.](image)
data has enabled immediate quality checks and data cleaning on critical variables which, at the time of the study, are beyond ODK’s built-in validations. It also enabled us to quickly understand and decide on ways to improve participant uptake rates, adding to a growing body of literature reporting how rapid data updates by an EDC enable swift decisions\(^{29,30,31}\).

The EDC was also designed to counteract some complexities associated with data collection in low- and middle-income countries; Internet connectivity was through a client-server system where data capture client (ODK Collect) was an offline stand-alone instance separated from the database server (ODK Aggregate). Data were synchronized from client to server at a later point in time at the base STRATAA data office where connectivity was possible. This approach has also been recommended by others\(^{32,33}\), and we did not experience any damage or theft of the tablets which led to data loss before data was synchronized to the database server. We adhered to a practice of disabling eCRF ‘edit’ options, post-interview, in order to maintain data integrity in the field. Validations within the ODK Collect prevented most errors. However, 0.4% duplicate household identities and 0.3% missing GPS points were uncovered in addition to other text and numeric errors. Following good data management practices\(^{29}\), our EDC also provided three backup strategies; scheduled data synchronization to (i) centralized repository, (ii) MySQL-defined databases, and (iii) scheduled incremental backup of MySQL-defined databases to external storage devices.

The EDC delivered considerable capacity for automated report generation, scalability and adaptability. We were able to use SQL to pull seasonal data from MySQL-defined database, and automate summaries of demographics in order to monitor progress of field work, and collective and individual performance of field workers. SQL was preferred because of its simple but powerful syntax, and its wider use in handling complex queries to epidemiological datasets\(^{34,35,36}\). Since the STRATAA consortium continuously generates laboratory data, post-census, the EDC also allows scalability, pushing laboratory data from laboratory database systems to MySQL-defined databases while keeping the database structure homogeneous across sites. The EDC could therefore not only be adopted by others collecting large data volumes requiring centralized data storage and automation of process, but also be tested by settings with little experience in conducting field-based research. The EDC is installed in three typhoid endemic settings and will be maintained by STRATAA consortium for adaptability of potential future studies.

Costs estimates on the data capture systems across low- and middle-income settings account for different item inclusions\(^{29,30,35,36}\). However, generally, our total variable cost of the EDC was minimal relative to most EDCs or paper-based data collection methods conducted in similar settings. For instance, our EDC’s total variable cost is analogous to US$13,883.00 incurred on a paper-based survey of neglected tropic diseases in Ethiopia\(^{28}\). However, in northern Malawi, estimated total variable costs of an EDC (US$14,477.46 [£11,427]) and paper-based system (US$23,939.06 [£18,895]) are slightly and much higher than our EDC, respectively\(^{30}\). Similarly, our total variable cost is relatively low compared to paper-based studies conducted in Bangladesh and Philippines (US$45,000.00) on verbal autopsy\(^{35}\), and in Kenya (US$15,999.00) on influenza\(^{36}\).

Conclusion

In conclusion, we have designed an EDC which has been implemented in three typhoid endemic sites to collect large volume of accurate data in short time periods with rapid access through automated reports. The EDC’s development required careful attention to detail but the materials’ variable costs prior to census implementation, were minimal relative to some EDCs and paper-based data collection methods. This EDC could be adopted in similar epidemiological settings, enabling the collection and management of large data volumes, centralize data storage, and automated data processes.

Data availability

Zenodo: Electronic-Data-Capture-for-Large-Scale-Typhoid-Surveillance---STRATAA: edc. https://doi.org/10.5281/zenodo.3738328\(^{15}\).

File ‘8.strataa_s1_s2_figures.csv’ contains raw data on error rates, errors before and after retraining field workers, and data entry performance.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Software availability

Coding scripts used to develop the EDC (ODK Collect eCRF and MySQL database objects) available at: https://github.com/deusthindwa/Electronic-Data-Capture-for-Large-Scale-Typhoid-Surveillance---STRATAA/tree/v1.1.

Archived code at time of publication: https://doi.org/10.5281/zenodo.3738328\(^{15}\).

License: GNU General Public License version 2.

Consent for publication

Not applicable.

Acknowledgements

Members of The Strategic Typhoid alliance across Africa and Asia consortium (STRATAA) have played a role of funding-acquisition and administration. The following members of STRATAA study consent to be acknowledged: Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal (Mila Shaky, Abhilasha Karkey, Sabina Dongol, Amit Aryjal, Buddha Basnyat); International Center for Diarrhoeal Diseases Research, Dhaka, Bangladesh (Nirod Saha, Farhana Khanam, Md Arifuzzaman Khan, John D. Clemens, Firdausi Quadri, K. Zaman); Malawi Liverpool Wellcome Trust Clinical Research Programme, Malawi (Deus Thindwa, Robert S Heyderman, Melita A Gordon, Tikhala Makhaza Jere, Chisomo
References

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 03 September 2020

https://doi.org/10.21956/wellcomeopenres.17339.r39896

© 2020 Kang G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gagandeep Kang
Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India

○ Electronic data capture is essential for clinical research. Data quality has been an issue, particularly where field staff with limited education are responsible for data capture. The authors have described how they built an eCRF using Open Data Kit and MySQL and deployed it for capturing data from over 300,000 individuals from 80,000 households.

○ The group collected baseline data from households for a census with an error rate of less than 50 per 10,000 in all three sites. Expectedly, text fields had more errors. While low, the error rate in Nepal was almost double other sites. It would be useful to know whether there were specific fields that were problematic in one location and not others? Or whether the errors were distributed evenly across field staff?

○ A key issue with electronic data capture is the availability of internet access and the group has addressed the combination with offline collection and twice daily uploading. It would help to have clarity on whether there are country-level regulatory/legal issues with the data being hosted with the Oxford Vaccine Group?

○ While this was not included in the scope of the paper, the authors’ comments on whether baseline census information data collection accuracy was comparable to data collected during follow-up or plans for future analysis would be helpful.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Public health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 03 September 2020

https://doi.org/10.21956/wellcomeopenres.17339.r39895

© 2020 Levine M et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Michael Sikorski
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA

Myron Levine
Center for Vaccine Development and Global Health, University of Maryland, Baltimore, MD, USA

The authors present a comprehensive custom electronic data capture system designed using open source tools and applied to a series of field censuses across three sites (one in Africa and two in Asia), targeting ~100,000 persons per site.

- The EDC system employs best-practices in data management, including quality control tools, automated data validation, and secure backups.

- The authors clearly describe the software data system and illustrate the flow of data using two effective figures.

- All components of the software system are available in the public domain and clearly annotated.

The results are both credible and clear-cut with regards to data management. However, with respect to the ability to extrapolate this method to other sites, there is a basic assumption that high quality and trainable workers can be mobilized and dedicated to allocate 13-16 weeks on such an activity and that funding will be available for the personnel and transportation costs to
utilize this EDC system in the field. We note that STRATAA represents a consortium of highly experienced sites with core funding and that each participating site was selected, in part, for their "paper-based studies of high participant volume and logistical complexity."

- Expanded discussion of the limitations and external validity of this study would help; including a discussion of how comparator studies cited in the discussion were selected, when they were conducted, and whether they are comparable given the potential differences in technology.

- Major limitations to a successful demographic survey include the costs of the staff and the time/cost for transportation, stable WiFi, electricity, and GPS signals.

In summary: where adequate core funding, staffing, and transportation are readily available, the EDC system presented by the authors is likely to be readily adaptable as an upgrade to paper-based or out-moded electronic systems at a reasonable cost.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Field epidemiology and disease surveillance in LMICs; demographic surveillance; multi-site electronic data capture systems.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.
This paper provides an excellent overview of a substantial electronic data capture system, implemented in three different locations.

I appreciate the detailed tables and schematic figures, as well as the cost and timeline data being published. This study would be very helpful for other settings deciding on whether to implement such a system, and identify potential issues to be aware of.

However, there is a narrative challenge throughout the paper. It is unclear after reading through the introduction, what the purpose of this particular paper was. Is it a summary of a novel tool? If so, what is novel about it as compared to other EDC’s? Or, if this is a descriptive study of a large scale implementation of an electronic system, what other large scale surveillance studies have failed to report this type of accuracy data, and how does this impact the quality of research? I think it would be helpful to the reader to more thoroughly ground the paper in a very clear introduction and purpose.

Similarly in the discussion, I appreciated the comparison of the EDC’s costs and accuracy to other systems. However, there is only a limited discussion of what might be driving these differences. For example, are the different error rates driven by the rate of text-based data entry, or the type of disease being surveilled? For costs, are all of these studies geo-locating individuals? Investigating these differences further would very much strengthen the discussion and conclusions made.

For Figure 3, I am not sure this is displayed correctly, or I may be misunderstanding what is being displayed. It appears that the post-retraining error is 1 minus the pre-retraining error for each field worker. Presumably some field workers may benefit less than others from the re-training?

Some more minor comments:

Methods

- Paragraph 2 of the methods seems to be summarized at least partly in Figure 1, so would remove.
- Some of the terms (preloading, looping) not obvious to a general audience, can you define?
- "All the other errors exposed by the external SQL queries were investigated thoroughly in the field before corrections could..." This section was a bit unclear - what are the other errors? Any non-GPS errors, or those that couldn't be auto-corrected through the SQL script?
- "The maximum number of visits to the household prior declaring the household vacant or
errors permanently unresolved was twice." Would move this to results.

- The operation and implementation sections could be switched in order in the paper.

Discussion
- The first time I see the 12 hour upload frequency is in the discussion unless I missed it, this should be in the methods somewhere.

Is the rationale for developing the new software tool clearly explained?

No

Is the description of the software tool technically sound?

Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?

Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?

Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?

Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Mathematical and statistical modeling of typhoid fever and other enteric diseases.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
demonstrate what new information it adds to the scientific community, what was done different from previous ECDs, and leaves room for bias with facilities chosen for previous good performances. It also needs to speak more on the challenges and limitations especially in real time data updates to servers in low income settings where network remains an issue, collecting data and the assumption that dilapidated facilities etc. are justification for poor data is not proven and does not hold true.

A 12 hour regular synchronization is really not feasible in our setting esp. Africa.

Once these issues are addressed the paper should be considered for indexing.

I have some specific comments that can be found in the PDF file here which need to be addressed.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My areas of research include Immunology, use of emobile technology for health, data management, clinical trials, research and International Health regulation.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.