STUDY PROTOCOL

Prospective Investigation of Markers of Elevated Delirium Risk (PRIMED Risk) study protocol: a prospective, observational cohort study investigating blood and cerebrospinal fluid biomarkers for delirium and cognitive dysfunction in older patients [version 1; peer review: 2 approved with reservations]

Jonathan Whitby 1,2, Sohail Bampoe 2,3, James N Fullerton 4, Ashley Smaje 5, Joanna Hornby 1, Bence Hajdu 2,3, Nick Schofield 6, Ronnie Stafford 7, Henrik Zetterberg 8, Daniel F McAuley 9, Peter Passmore 10, Emma Cunningham 10, John Whittle 11, David Walker 2,3, Daniel Davis 1

1MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
2Centre for Perioperative Medicine, University College London, London, UK
3Department of Anaesthesia and Perioperative Medicine, University College London Hospitals NHS Trust, London, UK
4Division of Medicine, University College London, London, UK
5University College London Hospitals NHS Trust, London, UK
6Department of Anaesthesia, Royal Free Hospital, London, London, UK
7Department of Computer Science, University College London, London, UK
8UK Dementia Research Institute at UCL, University College London, London, UK
9Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
10Centre for Public Health, Queen's University Belfast, Belfast, UK
11Department of Anesthesiology, Duke University School of Medicine, Durham, USA

Abstract

Background: Delirium is a common post-operative complication, particularly in older adults undergoing major or emergency procedures. It is associated with increased length of intensive care and hospital stay, post-operative mortality and subsequent dementia risk. Current methods of predicting delirium incidence, duration and severity have limitations. Investigation of blood and cerebrospinal fluid (CSF) biomarkers linked to delirium may improve understanding of the underlying pathophysiology, particularly with regard to the extent this is shared or distinct with underlying dementia. Together, these have the potential for development of better risk stratification tools and perioperative interventions.

Methods: 200 patients over the age of 70 scheduled for surgery with routine spinal anaesthetic will be recruited from UK hospitals. Their cognitive and functional baseline status will be assessed pre-operatively by telephone. Time-matched CSF and blood samples will be taken at the time of surgery and analysed for known biomarkers of neurodegeneration and...
neuroinflammation. Patients will be assessed daily for delirium until hospital discharge and will have regular cognitive follow-up for two years. Primary outcomes will be change in modified Telephone Interview for Cognitive Status (TICS-m) score at 12 months and rate of change of TICS-m score. Delirium severity, duration and biomarker levels will be treated as exposures in a random effects linear regression models. PRIMED Risk has received regulatory approvals from Health Research Authority and London – South East Research Ethics Committee.

Discussion: The main anticipated output from this study will be the quantification of biomarkers of acute and chronic contributors to cognitive impairment after surgery. In addition, we aim to develop better risk prediction models for adverse cognitive outcomes.

Keywords
delirium, epidemiology, biomarkers, prognosis
Introduction

Delirium, a neuropsychiatric syndrome characterised by altered arousal, inattention and other cognitive deficits, is a common response to acute physiological stressors. The magnitude of the stress required to precipitate delirium is inversely proportional to the degree of prior brain vulnerability\(^1\). Delirium is therefore common in acutely ill older people, affecting at least 25\% such inpatients at any time\(^2\), and will frequently complicate perioperative care\(^3\). The prevalence of postoperative delirium depends on type of surgery, particularly emergency procedures in populations with high frailty or comorbidities, but an overall postoperative incidence of 20\% is a reasonable estimate\(^4\). Elective surgery carries a lower, but still significant risk (4\% in a population-based cohort)\(^5\). Estimated prevalence varies substantially according to detection methods and diagnostic algorithms used\(^6\). Nonetheless, delirium is consistently associated with a range of adverse outcomes: increased length of stay, admission to critical care, institutionalisation and subsequent cognitive impairment and dementia risk\(^5,7,8\).

The pathophysiological mechanisms that underpin perioperative delirium and its sequelae have yet to be systematically studied. Certain pathways may account for the development of delirium itself, while others may drive longer-term cognitive outcomes such as progression of dementia\(^7\). The degree to which these interrelate, are separate or shared is largely unknown. One approach to investigate the neural basis of delirium has been to use cerebrospinal fluid (CSF) samples obtained through regional anaesthesia\(^9\).

Potential modifiable perioperative risk factors for delirium include depth of anaesthesia, intraoperative hypotension and cerebral oxygenation. These measures have been investigated separately and together in various surgical contexts but have not been extensively correlated with CSF biomarkers and longer-term neurocognitive outcomes\(^10\).

Aims

To understand mechanisms underlying perioperative delirium by assessing CSF and blood-based biomarkers of acute and chronic brain injury. Through pre- and post-operative follow-up, the cross-sectional and longitudinal significance of delirium and its biomarkers can be assessed. We will include intra-operative fronto-temporal processed EEG and functional near-infrared spectroscopy with perioperative delirium and subsequent cognitive decline. Together, we envisage these findings will lead to better ways of predicting delirium and long-term cognitive outcomes.

Objectives

1. Recruit a cohort of individuals aged ≥70 years undergoing elective and emergency surgery and where neuraxial anaesthesia/analgesia (spinal anaesthesia) is part of the anaesthetic technique.
3. Assess the impact of common neurophysiological insults in the perioperative period on the incidence of delirium and its sequelae.
4. Undertake serial measures of cognitive function, including delirium, with outcomes ascertained for at least two years.

PRIMED Risk will collaborate closely with investigators from Queen’s University Belfast (QUB), which have access to an existing cohort of n=282 CSF samples collected from elective hip and knee replacements (PI: Cunningham)\(^12\). Our clinical assessment and CSF analysis protocols are closely aligned and we envisage replicating findings across both sets of samples where relevant.

Hypotheses

1. Biomarkers of acute and chronic brain injury are cumulatively associated with higher incidence of perioperative delirium.
2. Biomarkers of acute and chronic brain injury interact multiplicatively, associated with the fastest degree of cognitive decline.
3. Perioperative physiological stressors such as prolonged hypotension, excessive depth of anaesthesia and cerebral hypoxia are associated with clinical delirium and faster cognitive decline.

Methods

Recruitment

Adults aged ≥70 years undergoing surgery with planned spinal anaesthesia will be identified at the time of listing and approached either in person (e.g. at a pre-operative assessment clinic), or by letter. Emergency surgical patients will be identified from emergency theatre lists (Figure 1). Patients will initially be recruited from University College London Hospitals (UCLH) and the Royal Free Hospital (RFH) but other sites may open through the NIHR Clinical Research Network. In addition to the experience of our QUB co-investigators, we have piloted the identification, consent and follow-up of potential participants across both sites using a range of approaches and have shown 25\% recruitment to be feasible.

Planned patient groups include urological, colorectal, hepatic and gynaecological resections, major vascular surgery and emergency neck of femur fracture repair. Cardiothoracic and neurosurgical patients will be excluded because direct brain complications through routes other than delirium are more likely in these cases. Patients will also be excluded if they are aphasic or do not speak English sufficiently to undertake cognitive assessments, if they were not scheduled to receive spinal anaesthesia as standard of care, or were not expected to survive hospital stay.

Primary outcome

Modified Telephone Interview for Cognitive Status (TICS-m) score ascertained 12 months after index surgery\(^13,14\).
Pre-operative assessment of baseline function
Enrolled patients will be contacted by telephone prior to admission for surgery to complete a baseline neurocognitive and functional assessment. This includes assessment of general health, subjective memory complaints, hearing, vision, nutrition, continence, falls and mood. Pre-operative function will be assessed using the Barthel Index of Activities of Daily Living and the Nottingham Extended Activities of Daily Living Scale. Cognitive assessments include the Modified Telephone Interview for Cognitive Status (TICS-m), as well as measures of attention, recall, and verbal fluency from the Addenbrooke’s Cognitive Examination III (ACE-III). Emergency participants will also be recruited at admission. If such patients do not have delirium, the standard baseline assessment will be applied. For those with prevalent delirium, an additional assessment of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) will be undertaken. This has shown to be a feasible method for obtaining a proxy for estimating a pre-existing dementia in patients with delirium15.

Peri-operative data collection
Depth of anaesthesia (derived from processed fronto-temporal EEG) and cerebral oxygenation will be monitored with bispectral index (BIS) and near-infrared spectroscopy (NIRS) sensors respectively, attached to the patient prior to anaesthetic induction to monitor changes in these parameters during induction and intubation. Arterial catheters will routinely be used to monitor intra-operative and post-operative blood pressure.

Physiological parameters from the anaesthetic machine monitor will be contemporaneously recorded onto a research laptop at 1-minute intervals for the duration of the surgical procedure. UCLH uses an anaesthetic charting system integrated into the electronic health records system; additional physiological measurements will be extracted from these electronic anaesthetic records. Parameters recorded will include end-tidal carbon dioxide (etCO₂), minimum alveolar concentration (MAC) if using inhalational agents, invasive blood pressure, mean arterial pressure (MAP), cardiac output, arterial oxygen saturation (SpO₂), heart rate and core body temperature.

Case report forms will be used to collect patient information including demographics, body mass index, medical and drug history, functional capacity in metabolic equivalents (METs) and cardiopulmonary exercise test (CPET) data (where available as part of routine care), and baseline blood test results. Details of the surgical procedure and the delivered anaesthetic (including total intravenous anaesthesia doses if applicable) will also be captured on case report forms at the time of the operation.

Biological sample collection
Venous blood samples will be drawn from a newly inserted peripheral venous cannula into tubes for plasma (BD Vacutainer® K2E (EDTA) 10.0mL) and serum (BD Vacutainer® SST™ II Advance 8.5mL) prior to administration of anaesthetic or pre-medication agents. Samples will be centrifuged at 2000G for 10 minutes at 20°C, before dividing plasma and serum into 500µL aliquots and storing at -80°C for later analysis.

At the time of pre-operative spinal anaesthetic, up to 5mL of CSF will be collected into a sterile universal polypropylene container. It will be centrifuged at the same time as the blood samples to remove any cellular debris, and also stored in 500µL aliquots at -80°C for later analysis.

Post-operative assessments
Patients will be assessed for delirium each weekday after surgery until hospital discharge using the Memorial Delirium Assessment Scale (MDAS), Observational Scale of Level of Arousal (OSLA), and Hierarchical Assessment of Balance and Mobility (HABAM).

Collateral history regarding cognition, mobility and sleep will be taken from a personal and/or healthcare professional informant.
Routinely collected physiological parameters (temperature, blood pressure, oxygen saturation, heart rate, respiratory rate) will be recorded, as will blood test results and any medication changes.

Post-operative morbidity will be recorded using the Post-Operative Morbidity Survey (POMS), a validated tool for quantifying post-surgical morbidity in 9 domains. This survey will be completed on post-operative days 1, 3, 5, 7, 10, 14 and subsequently every 7 days until hospital discharge. Post-surgical complications will be recorded and graded according to the Clavien-Dindo classification.

Long-term follow-up
Following discharge from hospital, patients will be contacted by phone for repeat neurocognitive and functional assessment at regular intervals until two years after the procedure. These assessments will be the same as the pre-operative baseline questionnaire, including the TICS-m primary outcome measure.

Sample analysis
Samples will be analysed using established immunohistochemical methods for detection and quantification of biomarkers. Biomarkers will include, but are not limited to:

- Alzheimer-related biomarkers: amyloid β1-40, amyloid β1-42, phosphorylated tau (P-tau)
- Neuroaxonal injury/neurodegeneration: total tau (T-tau), neurofilament light chain (NFL)
- Astrocytic and/or microglial activation: TREM2, MCP-1, S100B, YKL-40
- Inflammation: IL-1, IL-1ra, IL-6, IL-8, TNF-α, IL-2, IL-12, VEGF
- Tissue remodelling: matrix metalloproteinases, brevican
- Neuroprotection: soluble forms of alpha and beta cleaved amyloid precursor protein

Data analysis
Primary outcomes
- Absolute change in TICS-m score at 12 months
- Rate of change of TICS-m score up to 12 months

Secondary outcomes
- Absolute change in ADL score at 12 months
- Rate of change of ADL score at 12 months
- Incidence and severity of postoperative morbidity by POMS
- Incidence and severity of postoperative complications by Clavien-Dindo

Exposures
- Biomarkers
- Severity and duration of delirium
- Baseline TICS-m score
- Age
- Sex
- Presence of vascular risk factors
- Level of education
- Anaesthetic factors: blood pressure (diastolic BP <60; SBP <80; MAP <75, <69; MAP drop 20% and 30% from baseline; time under curve); hypotension predictive index; BIS; end-organ oximetry including cerebral oximetry; cardiac output.

Outcomes will be analysed using random-effects linear regression with TICS-m score measured two-monthly, adjusted for the exposures above. Between biomarker interactions will be estimated. Bonferroni correction will be performed to account for repeat biomarker testing. Stata 15.0 (StataCorp, Texas) will be used for all analyses.

Sample size calculation
The present literature on the CSF distribution of biomarkers in delirium is insufficient to provide clear estimates for power calculations. Therefore, we will estimate power for the whole study based on data from the QUB data. The optimal analysis would involve random effects ANOVA, where different distributions of biomarker profiles (factor 1) could be compared with delirium status (factor 2), where the random effects account for the inter-dependence of the biomarker levels. In the meantime, a conservative approach to sample size estimation would be to consider each category of biomarker as a binary parameter (present / absent). In this case, assuming α=0.05 with 4 degrees of freedom (e.g. inflammatory cytokines) and a 20% difference defining biomarker positivity, 298 individuals are needed to detect differences according to delirium status if β=0.8 or 395 individuals if β=0.9. A full statistical analysis plan will be published before the study is completed.

Though clinically relevant thresholds are not yet established for dementia, we are likely to be powered to detect even smaller effects given n=200 from PRIMED-risk with n=282 from QUB. Together, these representing the largest repository of perioperative delirium-CSF samples to date with unrivalled opportunities to assay a comprehensive biomarker battery with the power to detect subgroup effects (with/without dementia).

Regulatory approvals
PRIMED Risk has received ethical approval from Health Research Authority (England) and Health and Care Research Wales / Ymchwil Iechyd a Gofal Cymru, and a favourable opinion from London - South East Research Ethics Committee (Ref. 18/LO/2073; IRAS 234979). Recruitment for all participants will comply with Good Medical Practice and the Mental Capacity Act (2005). A consultee will be approached to consider individuals lacking capacity to decide to participate (elective or emergency patients). This may include the GP or consultant acting as a professional consultee in line with Section 32 of the Mental Capacity Act.
Dissemination of study results

On study completion, data will be accessible through the Dementias Platform UK repository. Study outputs will be disseminated through journal publications and conference presentations.

Study status

Study is currently open, with the first 20 (10%) participants recruited.

Discussion

The PRIMED Risk study represents an opportunity to understand the interacting effects of pre-morbid cognition, surgical and anaesthetic factors, and incident delirium on cognitive outcomes. It will also explore mechanisms underlying these relationships by assessing associated biomarkers of acute and chronic neuronal injury.

PRIMED Risk is related to the broader longitudinal Delirium and Population Health Informatics Cohort (DELPHIC)\(^1\). DELPHIC investigates the long-term impact of delirium by assessing cognition before, during and after hospitalisation in a whole population setting (urban sample in London, rural sample in Hereford). With identical clinical assessments, PRIMED Risk has the advantage of sampling from a wider geographical area while focusing on perioperative events and with more detailed biomarker evaluation than DELPHIC. Other ongoing studies with comparable methodological approaches include the SAGES and ASCREDB cohorts\(^{17,18}\).

PRIMED Risk, together with existing data from QUB, sets out to address central questions on perioperative brain health. These concerns are of interest to a range of patient, hospital and public policy stakeholders. We anticipate our findings to contribute to local and national quality improvement work. Given the unmet need around delirium and older surgical patients, PRIMED Risk will systematically describe these and act as a driver for future service development. At the same time, we envisage novel contributions to the understanding of delirium and mechanisms underlying the range of cognitive impairments (including perioperative neurocognitive disorder) associated with surgical procedures\(^9\).

Data availability

No data are associated with this article.

References

Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 01 April 2020

https://doi.org/10.21956/wellcomeopenres.17156.r38253

© 2020 Eckenhoff M et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Roderic G. Eckenhoff
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Maryellen F. Eckenhoff
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Summary: The authors report the design of a study aimed at discerning the mechanisms of delirium after surgery by associating pre-operative biomarkers, (both blood and CSF) and intraoperative measures (BIS and NIRS) with the rate of delirium, as well as longer term cognition measured using the TICS and function using ADL. This is an important area in need of study.

Major Comments:
1. The title, introduction, aims and hypotheses are focused on delirium and underlying mechanisms but, interestingly, delirium appears neither in the primary or secondary outcomes. The authors need to clarify whether this study is about mechanisms underlying delirium or long term decline (PND).

2. Explain how the patient number, 200, was chosen. If, as you indicate, delirium is present in 4% of the population after elective surgery, then that would be 8 patients, which would be insufficient to address the questions posed. How much of your patient population will be emergency surgical patients, with a higher incidence of delirium?

3. Emergency patients complicate the acquisition of pre-operative cognitive data; which, even in the absence of delirium, would be confounded by anxiety, pain, and pain medicines. Further, while a broad array of surgical procedures is pragmatic, it dramatically complicates analysis because of the very large variation in tissue injury, pain, blood loss, etc. These points need to be addressed.

Minor Comments:

Delirium assessments need to be conducted every day, not just on "weekdays," and the number of...
1. Delirium assessments need to be conducted every day, not just on “weekdays,” and the number of “daily” delirium assessments conducted needs to be stated. Twice daily is the typical accepted frequency.

2. Are the authors collecting sedative and other drug administration data?

3. Why go out to 2 years with cognitive testing if the outcomes are only at 12 months? Please define “regular intervals” for the long term cognitive assessments.

4. State the “established immunohistochemical methods” that will be used for biomarker analyses. Typically, IHC refers to tissue immunolabeling. If you mean ELISA or SIMOA so state.

5. Under sample analysis, indicate which biomarkers from which biofluid. All of these analytes are not measurable in both biofluids.

6. The authors should hypothesize which biomarkers, and why, will be associated with delirium or PND.

7. Great that the authors are combining resources with the QUB study but it is unclear what data the QUB study has besides CSF samples from elective hip and knee replacements. Please elaborate.

Is the rationale for, and objectives of, the study clearly described?

Partly

Is the study design appropriate for the research question?

No

Are sufficient details of the methods provided to allow replication by others?

No

Are the datasets clearly presented in a useable and accessible format?

Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Perioperative neurocognitive disorders.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Reviewer Report 17 March 2020

https://doi.org/10.21956/wellcomeopenres.17156.r37885

© 2020 Spies C et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Whitby and colleagues publish a study protocol for a prospective, multicenter, observational, clinical study including elderly patients >70 years, with planned surgery including spinal anaesthesia. Patients will undergo pre-operative cognitive and functional assessments taken out by telephone call. Cerebrospinal fluid (CSF) and blood samples will be taken at the time of surgery and being analysed for known biomarkers of neurodegeneration and neuroinflammation. After surgery, patients will be assessed for delirium once daily until discharge and they will get regular telephone calls to assess cognitive follow-up (TICS-m) for two years. Delirium severity, duration as well as CSF and blood biomarkers will be included in linear regression models, to anticipate the acute and chronic contributors for postoperative cognitive impairment. The authors aim to develop a better risk prediction model for postoperative cognitive adverse outcomes.

The authors focus on a very important field in perioperative treatment improvement. They plan to take simultaneously CSF and blood samples preoperatively, trying to develop a risk prediction model for adverse cognitive outcomes.

Major concerns:

- The authors want to include postoperative Delirium (POD) duration and severity as “random effect” in their model; however, POD assessment will only be taken out once daily during weekdays. Since POD has a fluctuating course, POD screening in the first week after surgery should be done twice daily or even in every shift [Aldecoa, EJA 2017; ESA Guideline for postoperative Delirium].

- The most frequent validated POD screening tools are CAM, CAM-ICU, NuDesc and DSM-V. The authors plan to use MDAS and OSLA. Please explain. This might cause problems in comparing results later on with international related studies in the field [Aldecoa, EJA 2017; ESA Guideline for postoperative Delirium].

- The presented sample size calculation seems somehow arbitrary. We suggest to include a statistical review.

Minor concerns:

Aims: Here you present for the first time the recording of EEG and NIRS. Since you also present later on a Hypotheses including these measurements, please include this in the introduction and Abstract as well.

Methods:

- You also wish to include Emergency participants, whereas your main patient cohort will be recruited by telephone call prior to admission. These different settings during neurocognitive setting might bias your data. It seems to me to be more reasonable to just focus on one patient group – hear patients you reach by telephone before admission.

- Arterial catheters will be indicated in all patients?
• Please indicate distinct time scales when you will undertake those “regular” follow-up telephone calls.

• Sample analysis: here you present a bunch of possible biomarkers. Please give a more detailed overview within the introduction, about your hypotheses related to each biomarker you will examine.

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Partly

Are sufficient details of the methods provided to allow replication by others?
No

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.