OPEN LETTER
Management of intracranial tuberculous mass lesions: how long should we treat for? [version 1; peer review: awaiting peer review]

Suzaan Marais1, Ronald Van Toorn2, Felicia C. Chow3, Abi Manesh4, Omar Siddiqi5,6, Anthony Figaji7, Johan F. Schoeman2, Graeme Meintjes8, Tuberculous Meningitis International Research Consortium

1Department of Neurology, Inkosi Albert Luthuli Central Hospital and University of KwaZulu-Natal, Durban, 4091, South Africa
2Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
3Weill Institute of Neurosciences and Department of Neurology and Division of Infectious Diseases, University of California, San Francisco, California, 94110, USA
4Department of Infectious Diseases, Christian Medical College, Vellore, 632004, India
5Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215, USA
6Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
7Division of Neurosurgery and Neuroscience institute, University of Cape Town, Cape Town, 7700, South Africa
8Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Medicine, University of Cape Town, Cape Town, 7925, South Africa

Abstract
Tuberculous intracranial mass lesions are common in settings with high tuberculosis (TB) incidence and HIV prevalence. The diagnosis of such lesions, which include tuberculoma and tuberculous abscesses, is often presumptive and based on radiological features, supportive evidence of TB elsewhere and response to TB treatment. However, the treatment response is unpredictable, with lesions frequently enlarging paradoxically or persisting for many years despite appropriate TB treatment and corticosteroid therapy. Most international guidelines recommend a 9-12 month course of TB treatment for central nervous system TB when the infecting *Mycobacterium tuberculosis* (*M. tb*) strain is sensitive to first-line drugs. However, there is variation in opinion and practice with respect to the duration of TB treatment in patients with tuberculomas or tuberculous abscesses. A major reason for this is the lack of prospective clinical trial evidence. Some experts suggest continuing treatment until radiological resolution of enhancing lesions has been achieved, but this may unnecessarily expose patients to prolonged periods of potentially toxic drugs. It is currently unknown whether persistent radiological enhancement of intracranial tuberculomas after 9-12 months of treatment represents active disease, inflammatory response in a sterilized lesion or merely revascularization. The consequences of stopping TB treatment prior to resolution of lesional enhancement have rarely been explored. These important issues were discussed at the 3rd International Tuberculous
Meningitis Consortium meeting. Most clinicians were of the opinion that continued enhancement does not necessarily represent treatment failure and that prolonged TB therapy was not warranted in patients presumably infected with *M. tb* strains susceptible to first-line drugs. In this manuscript we highlight current medical treatment practices, benefits and disadvantages of different TB treatment durations and the need for evidence-based guidelines regarding the treatment duration of patients with intracranial tuberculous mass lesions.

**Keywords**
tuberculosis, central nervous system, treatment duration, management, imaging, tuberculous meningitis, tuberculoma, tuberculous abscess
Disclaimer
The views expressed in this article are those of the author(s). Publication in Wellcome Open Research does not imply endorsement by Wellcome.

Introduction
Neurological tuberculosis (TB) manifests as meningitis, radiculomyelitis, bony spinal disease and tuberculoma/tuberculous abscess that may occur intracranially or within the spinal space1. Similar to the other neurological TB manifestations, tuberculous mass lesions are common in settings with high TB incidence2-3, and high HIV prevalence4-7, where this diagnosis accounts for a significant proportion of intracranial space occupying lesions. The diagnosis of intracranial tuberculoma is most often presumptive and based on radiological features, supportive evidence of TB elsewhere and response to TB treatment. However, the treatment response of tuberculomas is unpredictable and lesions may persist for many years despite appropriate TB treatment and adjunctive corticosteroid therapy8-11. The optimal duration of TB treatment is unknown and clinical practice varies. In this manuscript we highlight current divergent clinical practice, benefits and disadvantages of different TB treatment durations and the need for prospective clinical trial data to determine the optimal treatment duration in patients with intracranial tuberculous mass lesions.

Pathogenesis and pathology
Hematogenous seeding after the primary infection is one proposed mechanism of central nervous system (CNS) involvement in TB12. Miliary disease may increase the risk of hematogenous spread to the CNS14. Mycobacterium tuberculosis (M.tb) may enter the CNS via direct infection of endothelial cells or trafficking through infected phagocytes15,16, which is followed by the formation of tubercles, most commonly in the brain cortex or meninges. Rupture of an adjacent tubercle into the subarachnoid space results in tuberculous meningitis (TBM), whilst tubercles that do not rupture may progress to form tuberculomas17. Tuberculomas show granulomatous inflammation with a central area of caseous necrosis surrounded by epithelioid histiocytes, Langerhan’s giant cells, lymphocytes, astrocytes and vascular proliferation that evolves to develop a thick vascular connective tissue layer.

The mycobacterial burden in CNS TB is low. The impressive pathology and evolution of lesions during TB therapy highlights the role of the host inflammatory response in pathogenesis. Microglia in the CNS are infected by M.tb and activated microglia release many cytokines that play a crucial role in pathogenesis18. TNF-α is a central molecule in the control and mediation of inflammation in CNS TB. While TNF-α is involved in granuloma formation and control of disease, elevated levels are associated with markers of increased pathology such as cerebrospinal fluid leukocytosis, higher levels of soluble inflammatory mediators, increased M.tb load and clinical deterioration19. Studies focused on the vasculature associated with tuberculomas have revealed significant vasculitis with proliferative changes in the basement membrane20.

Occasionally, tubercles may coalesce or continue to progress to form a tuberculous abscess, which is a large pus-filled encapsulated lesion containing bacilli21,22. Histopathologically, the tuberculous abscess wall shows chronic vascular granulation tissue whilst lacking the granulomatous reaction of a tuberculoma.

Clinical presentation
The clinical features of tuberculomas depend on their anatomic location in the brain, related to local mass effect, obstruction of cerebrospinal fluid pathways, and/or seizures. Supratentorial lesions are common in adults while infratentorial involvement is slightly more common in children23. Patients usually present sub-acutely with symptoms and signs such as headaches, seizures, depressed level of consciousness, and focal neurological deficits24,25. Infratentorial lesions commonly present with hydrocephalus. Pituitary apoplexy and movement disorders like chorea are rare manifestations of tuberculomas26,27. If associated with TBM, meningeal symptoms and signs may dominate the clinical picture. Tuberculous abscesses have a more accelerated course, often presenting acutely with associated fever21.

Imaging findings
Neuroimaging is essential for identifying intracranial tuberculous mass lesions with findings determined by the composition of the lesion. Tuberculomas have classically been categorized as non-caseating, caseating solid, and caseating liquid, that can be differentiated on computed tomography (CT) and magnetic resonance imaging (MRI)23. Multiple lesions are seen more often than isolated lesions though the latter is still common27,28. Perilesional edema can be present or absent.

CT is the most frequent modality used to identify tuberculomas due to its wide availability though it has limitations in resolution. Tuberculomas typically appear as round or lobulated nodules that are hypodense or isodense to the brain parenchyma. CT with contrast most commonly shows rim enhancement of lesions but nodular or homogeneous enhancement can also be seen24. The presence of a “target sign” on CT which consists of a rim enhancing lesion with central calcification is highly suggestive of a tuberculoma but uncommon29.

MRI is the preferred modality for the identification of tuberculomas due to superior resolution and better visualization of the posterior fossa relative to CT. Non-caseating granulomas are hypointense or isointense on T1-weighted imaging (T1WI) and hyperintense on T2-weighted imaging (T2WI, “T2-bright”) with homogeneous contrast enhancement30. Caseating solid granulomas are hypointense or isointense on T1WI and hypointense on T2WI (“T2-black”) with rim enhancement. Caseating liquid granulomas, which are rare, are hypointense on T1WI and hyperintense on T2WI with rim enhancement. Tuberculous abscesses may be indistinguishable from tuberculomas with a liquid center on standard MRI settings, but they are usually larger (>3 cm in diameter) and thin-walled in appearance31. Miliary tuberculomas appear as multiple, small (2–3 mm), scattered lesions that typically rim enhance with contrast administration and lack perilesional edema30.

Evidence of a satisfactory radiological response on serial brain imaging after TB treatment initiation includes a reduction in
perilesional edema, decrease in lesion size and calcification (seen on CT). Other findings supportive of improvement of liquidified tuberculomas and abscesses on MRI are a decrease in T2 brightness and, subsequently, loss of T2 signal. Evolution of TB abscesses from early-stage “T2-bright” with edema to “T2-black” lesions may represent a marker for cure. In our experience, the resultant homogeneous “T2-black” tuberculoma (with rim T1 contrast enhancement) may persist for many months in asymptomatic patients without relapse off TB treatment. CT of such lesions usually shows gradual calcification, which most often involves the capsule.

Paradoxical reactions
Paradoxical enlargement or the development of new intracranial tuberculomas or abscesses in patients with CNS or extraneural TB on appropriate treatment is well-described. Such reactions typically occur within the first six months after TB treatment initiation, but may rarely be delayed for a year or more. Paradoxical reactions are often identified when patients present with neurological deterioration during TB treatment, prompting brain imaging. In case series of predominantly HIV-uninfected patients with CNS TB, clinical deterioration due to paradoxical tuberculoma reaction has been described in 6–29%. However, many of these patients are asymptomatic during these episodes and the frequency of detecting paradoxical tuberculoma development or enlargement increases substantially (from 29% to 65%) if surveillance brain imaging is performed during the first six months of TB treatment. Paradoxical reactions are more common in HIV-infected patients, particularly in those who commence antiretroviral therapy (ART) after starting TB treatment, in which case it is referred to as paradoxical TB-immune reconstitution inflammatory syndrome (TB-IRIS). The influence of HIV on the frequency of paradoxical tuberculoma reactions (separate from the effect of ART) has rarely been reported. One recent study of 47 HIV-infected and 14 HIV-uninfected adults with tuberculomas found no difference in the frequency of paradoxical reactions by HIV status (36% in each group). The majority of HIV-infected patients were receiving ART prior to tuberculoma presentation or did not start ART after diagnosis, precluding the development of TB-IRIS in this group. The pathogenesis of paradoxical reactions (including IRIS) remains unclear but is likely related to an aberrant immune response to TB antigens rather than failure of TB treatment.

Medical treatment
The mainstay of treatment of intracranial tuberculomas is similar to that of TBM and includes TB therapy and corticosteroids. The World Health Organization, Centers for Disease Control and Prevention of America and the British Thoracic Society recommend a 9–12 month course of TB treatment for CNS TB when the \textit{M. tb} strain is sensitive to all drugs. However, these guidelines are based on expert opinion rather than randomized controlled trials. Specifically, no studies have compared different treatment durations in patients with intracranial tuberculomas. The morphology of the lesion plays an

---

**Figure 1.** Serial magnetic resonance imaging of a patient with drug-susceptible central nervous system tuberculosis who received TB treatment for 4 years. Axial T1-weighted post-contrast (T1'C) images and T2-weighted (T2) images are shown. At diagnosis, a miliary pattern with focal meningeal enhancement of the left temporal lobe was noted, which persisted at 6-months follow-up. At 18 months, a lobulated rim-enhancing tuberculoma had developed in the left temporal lobe which was of mixed intensity on T2-weighted images with surrounding edema. Despite gradual reduction in lesion size and perilesional edema with associated atrophy, rim-enhancement persisted during the next 8.5 years of follow-up. Notably, the patient did not deteriorate clinically after cessation of TB treatment and the T2-signal of the lesion became increasingly hypointense (“T2-Black”) suggesting cure.
important role in response to therapy and a one-size-fits-all approach may therefore be inappropriate in the decision regarding tuberculoma treatment duration. This is suggested by the almost invariably good response of miliary tuberculomas to TB treatment (presumably non-caseous) and the frequent persistence of caseous and liquifid TB lesions (e.g. abscesses) despite TB treatment.

Some guidelines suggest adjunctive systemic corticosteroids in all forms of CNS TB, including those in whom a strong suspicion of tuberculosis exists. Corticosteroid therapy may be of particular value when there is significant perilesional edema (resulting in symptomatology) and in cases where there is paradoxical enlargement despite optimal TB therapy. Corticosteroid duration should be tailored according to the radiological response of the tuberculoma and clinical wellbeing of the patient and balanced against side effects.

TB abscesses are often unresponsive to standard TB therapy with corticosteroids. Although no clinical trials exist, adjuvant thalidomide therapy (3–5 mg/kg/day) has been shown to be beneficial in patients who develop enlarging TB abscesses. In our experience, thalidomide can be stopped without relapse when clinical improvement is optimal or reached a plateau, regardless of whether radiological resolution has been achieved.

Surgical management
There are no controlled studies to determine the role of surgery in patients with intracranial tuberculomas. However, there are general principles from clinical practice and the existing literature that can be summarized. Biopsy for diagnosis is considered: 1) at the outset if the definitive diagnosis is unclear, and 2) for persistence or paradoxical growth of a presumed tuberculoma despite medical treatment (for diagnostics and drug sensitivity testing). Resection of the lesion may be considered: 1) to relieve symptomatic or potentially life-threatening mass effect and/or hydrocephalus, and 2) to treat medically refractory seizures. Drainage of abscesses is considered for symptomatic mass effect or hydrocephalus, especially when large and/or in the posterior fossa. However, surgery for tuberculous mass lesions is rarely performed in TB endemic settings as the clinical and imaging information is usually sufficient to make the diagnosis. Furthermore, risks associated with surgery, especially if the lesion is located in an eloquent or difficult to access brain area, and inadequate neurosurgical facilities usually combine to preclude surgical management.

Duration of TB treatment: what happens in practice?
There is variation in opinion and practice with respect to the duration of TB treatment in patients with intracranial tuberculomas or tuberculous abscesses. A major reason for this is the lack of prospective clinical trial evidence. In rare cases where a microbiological diagnosis is achieved, it is not feasible to access repeated clinical specimens from the site of disease to ascertain whether and when culture conversion has occurred, unlike pulmonary TB where sputum Mtb culture can be monitored and treatment duration adjusted accordingly. Monitoring is performed clinically and with brain imaging.

The routine duration of TB treatment in intracranial tuberculomas varies, with complete treatment courses ranging from 6 to 18 months depending on the clinician’s preference. Table 1 presents duration of treatment and outcome in tuberculoma studies published in English. Although some studies describe radiological resolution of tuberculomas in more than 80% of patients after 6–12 months of TB treatment, others have reported persistently enhancing lesions in the vast majority (71–82%) of cases after 9–12 months of treatment. Even after 24 months of therapy, tuberculomas may persist in 22–46% of cases.

Rationale for using longer versus shorter regimens
It is currently unknown whether persistent radiological enhancement of intracranial tuberculomas after 9–12 months of appropriate treatment represents active disease, inflammatory response in a sterilized lesion or merely revascularization. The consequences of stopping TB treatment prior to complete radiological resolution of these lesions has rarely been explored. These important issues were discussed at the 3rd International TBM Consortium meeting. Most clinicians were of the opinion that the continued enhancement does not necessarily represent treatment failure and that prolonged TB therapy (beyond 9–12 months) is not warranted in patients suspected of infection with or without proven Mtb strains susceptible to first-line drugs. This position is supported by the asymptomatic state of many patients and the paucity of AFB on staining and sterility of tuberculoma biopsy samples obtained prior to and following TB treatment initiation.

Immunohistochemical staining of excised tuberculomas also demonstrates high expression of vascular endothelial growth factor (VEGF) in the lesions with intense positivity of inflammatory mononuclear cells as well as reactive astrocytes and fibrocytes. The VEGF-induced angiogenesis in the granuloma capsule may therefore contribute, in addition to inflammation, to the persistent and prolonged contrast enhancement frequently seen on serial brain imaging. Furthermore, one trial reports no clinical or radiological deterioration at 24 months follow-up in 20 patients with persistent intracranial tuberculomas after completion of 9 months’ TB therapy.
Table 1. Summary of reported medical management strategies and clinical and radiologic outcomes of intracranial tuberculoma case series.

<table>
<thead>
<tr>
<th>Study, First author, year published, country</th>
<th>Study design</th>
<th>Patients, n (age group)</th>
<th>Duration of ATT, Months: %</th>
<th>Steroid use, %</th>
<th>Favorable clinical outcome, % (n/N)</th>
<th>Radiologic persistent tuberculoma(s), % (n/N): months F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghani et al., 1994, multiple</td>
<td>Case report + review</td>
<td>41 (C + A)</td>
<td>10-24:100</td>
<td>80</td>
<td>68 (25/37)</td>
<td>N/A</td>
</tr>
<tr>
<td>Anuradha, 2011, India</td>
<td>Retrospective observational</td>
<td>43 (C + A)</td>
<td>9: 100</td>
<td>100</td>
<td>26 (11/43)</td>
<td>79 (30/38): 9</td>
</tr>
<tr>
<td>Awada et al., 1998, Saudi Arabia</td>
<td>Retrospective observational</td>
<td>18 (C + A)</td>
<td>12-18:100</td>
<td>67</td>
<td>N/A</td>
<td>100 (18/18): 12</td>
</tr>
<tr>
<td>Bayindir et al., 2006, Turkey</td>
<td>Retrospective observational</td>
<td>23 (C + A)</td>
<td>12-18:100</td>
<td>N/A</td>
<td>100 (15/15)</td>
<td>N/A</td>
</tr>
<tr>
<td>Gupta et al., 1990, India</td>
<td>Prospective observational</td>
<td>31 (C + A)</td>
<td>11-12:97</td>
<td>N/A</td>
<td>N/A</td>
<td>14 (4/29): 12</td>
</tr>
<tr>
<td>Gupta et al., 2003, India</td>
<td>Prospective observational</td>
<td>9 (C + A)</td>
<td>16:11</td>
<td>18-34: 88</td>
<td>89</td>
<td>44 (4/9)</td>
</tr>
<tr>
<td>Harder et al., 1983, Saudi Arabia</td>
<td>Retrospective observational</td>
<td>20 (C + A)</td>
<td>12:61</td>
<td>9-24:39</td>
<td>75</td>
<td>35 (7/20)</td>
</tr>
<tr>
<td>Idris et al., 2007, Sudan</td>
<td>Retrospective observational</td>
<td>16 (A)</td>
<td>18:100</td>
<td>56</td>
<td>N/A</td>
<td>13 (2/16): 18</td>
</tr>
<tr>
<td>Li et al., 2012, China</td>
<td>Retrospective observational</td>
<td>6 (A)</td>
<td>18:100</td>
<td>33</td>
<td>83 (5/6)</td>
<td>N/A</td>
</tr>
<tr>
<td>Man et al., 2010, France</td>
<td>Retrospective observational</td>
<td>23 (A)</td>
<td>9-18:88</td>
<td>21:12</td>
<td>43</td>
<td>53 (10/19)</td>
</tr>
<tr>
<td>Marais et al., 2019, South Africa</td>
<td>Retrospective observational</td>
<td>66 (A)</td>
<td>≥9: 96%</td>
<td>19-46:54</td>
<td>76</td>
<td>37 (20/54)</td>
</tr>
<tr>
<td>Nair et al., 2019, India</td>
<td>Retrospective observational</td>
<td>86 (C + A)</td>
<td>≥18:100 &gt;24-120:22</td>
<td>N/A</td>
<td>N/A</td>
<td>22 (19/86): 24</td>
</tr>
<tr>
<td>Poonnoose et al., 2003, India</td>
<td>Retrospective observational</td>
<td>28 (C + A)</td>
<td>≥18:100</td>
<td>54</td>
<td>68 (19/28)</td>
<td>69 (19/28): 18</td>
</tr>
<tr>
<td>Rajeswari et al., 1995, India</td>
<td>RCT</td>
<td>108 (C + A)</td>
<td>9:100</td>
<td>100</td>
<td>90 (97/108)</td>
<td>22 (20/91): 9</td>
</tr>
<tr>
<td>Ravenscroft et al., 2001, South Africa</td>
<td>Prospective observational</td>
<td>34 (C)</td>
<td>≥6:100</td>
<td>12:6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shah et al., 2016, India</td>
<td>Prospective observational</td>
<td>28 (C + A)</td>
<td>≥12:100</td>
<td>18-24:17</td>
<td>79</td>
<td>N/A</td>
</tr>
<tr>
<td>Shah et al., 2019, India</td>
<td>Case series</td>
<td>6 (C)</td>
<td>23-32:100</td>
<td>83</td>
<td>83 (5/6)</td>
<td>83 (5/6): &gt;24</td>
</tr>
<tr>
<td>Tandon et al., 1985, India</td>
<td>Retrospective observational</td>
<td>50 (C + A)</td>
<td>12-18:98</td>
<td>N/A</td>
<td>78 (39/50)</td>
<td>40 (20/50): N/A</td>
</tr>
<tr>
<td>Wasay et al., 2004, Pakistan</td>
<td>Retrospective observational</td>
<td>102 (C + A)</td>
<td>9-12:100</td>
<td>79</td>
<td>34 (17/50)</td>
<td>NA</td>
</tr>
<tr>
<td>Yaramis et al., 1998, Turkey</td>
<td>Retrospective observational</td>
<td>4 (C)</td>
<td>12:100</td>
<td>24:50</td>
<td>100</td>
<td>100 (4/4)</td>
</tr>
</tbody>
</table>

Abbreviations: n, number; ATT, antituberculous therapy; N, number with known data; F/U, follow-up; C, children; A, adults; N/A, data not available; RCT, randomized controlled trial

1 All studies included HIV-uninfected patients or patients with unknown HIV status, except studies by Man et al. and Marais et al., that included 7, and 47 HIV-infected patients, respectively;
2 The definition varies between studies and include descriptions such as “complete recovery”, “no neurological disability”, “asymptomatic” and unspecified “good clinical recovery”. Several studies included patients with co-existing tuberculous meningitis that might have influenced clinical outcomes.
3 Including 30 patients with available data
4 Including patients followed up for at least 9 months
5 Including patients treated medically without surgical intervention
6 Excluding 1 patient who died during therapy
7 “32” refers to number of meningeal tuberculomas in 25 patients
8 Including patients followed up for at least 12 months
A theoretical argument in favor of continuing treatment longer than 9–12 months is that drug penetration into the CNS is suboptimal and is likely even more suboptimal into the tuberculoma or tuberculous abscess. Drug penetration into cerebrospinal fluid is poor for rifampicin, the key sterilizing drug. Tuberculous abscesses that, unlike tuberculomas, are teeming with bacilli may potentially act as an immune sanctuary protecting the bacilli from immune effector cells within pus. The consequence of these factors may be that sterilization is not always achieved with 9–12 months treatment and that a longer duration may be required. The inability to obtain specimens to confirm sterilization make this an area of uncertainty. Pertinent, too, is that relapse of CNS TB could have catastrophic consequences. Furthermore, some patients need late re-initiation of immunomodulatory treatment and this should ideally be done while on TB treatment to avoid relapse resulting from iatrogenic immunosuppression. However, if treatment is continued because of residual lesions, when does the clinician stop therapy? Should this be until all contrast enhancing lesions have resolved – which can take years – or some arbitrary timepoint before then?

Conclusion

Intracranial tuberculoma represents a major health concern in developing countries. Routine practices often include prescription of TB therapy until lesional enhancement has resolved, which may expose some patients to an unnecessarily prolonged treatment course. Because of the lack of evidence-based guidelines and equipoise with respect to shorter versus longer duration regimens, further research is needed. In the first instance, a multi-country audit of existing practice and outcomes in terms of cure and relapse would help in defining the spectrum of current practice. Ultimately, a randomized controlled trial comparing a standardized duration of TB treatment with duration based on brain imaging would provide a definitive answer to this question.

Ethics statement

Images presented in Figure 1 were obtained during a retrospective study of patients who presented with intracranial tuberculoma to Inkosi Albert Luthuli Central Hospital in Durban, South Africa. The Biomedical Research Ethics Committee (BREC) of the University of KwaZulu-Natal (UKZN) approved the study (BREC class approval number BCA325/15). As this was a retrospective folder review, and data were analyzed anonymously outside of the clinical setting, the ethics committee of UKZN waived the requirement for informed consent and informed consent was not obtained.

Data availability

Underlying data

No data is associated with this article.

References


62. van Toorn R, Rabie H, Dramowski A, et al.: Neurological manifestations of