Patterns of neurobehavioral functioning in school-aged survivors of neonatal jaundice and hypoxic-ischemic encephalopathy in Kilifi, Kenya: A cross-sectional study

Dorcas N. Magai1,2, Charles R Newton2-4, Paul Mwangi2, Hans M. Koot1, Amina Abubakar2-5

1Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2Centre for Geographic Medicine Research Coast, Kilifi, Bofa Road, Kenya
3Department of Psychiatry, University of Oxford, Oxford, UK
4Department of Public Health, Pwani University, Kilifi, Kenya
5Institute for Human Development, Aga Khan University, Nairobi, Kenya

Abstract

Background: Studies in high-income countries have reported that school-aged children who survive neonatal jaundice (NNJ) and hypoxic-ischemic encephalopathy (HIE) develop long-term neurocognitive problems. However, less is known about the patterns of functioning in school-aged survivors of NNJ and HIE in sub-Saharan Africa. This study examined patterns of functioning in school-aged children who survived NNJ and HIE in Kilifi, Kenya.

Methods: This is a cross-sectional study that included 107 survivors of NNJ/HIE (64 with NNJ, 43 with HIE), aged 6-12 years, admitted to Kilifi County Hospital on the Kenyan Coast. The Gross Motor Function Classification System (GMFCS), Adapted Communication Profile, Raven's Coloured Progressive Matrices (RCPM) and an epilepsy screening tool were used to assess gross motor function, communication function, intellectual functioning, and epilepsy, respectively.

Results: Most of the survivors of NNJ (95.2%) and HIE (95.3%) had no impairments in gross motor functioning. A small percentage of the children in the NNJ and HIE groups had profound problems in their communication (4.7% and 4.7%); expressive communication function (4.7% and 4.7%); social functions (3.1% and 2.3%); receptive communication (4.7% and 2.3%); and communicative effectiveness (4.7% and 2.3%). Cognitive impairment was reported in 10.9% and
11.9% for NNJ and HIE survivors, respectively. Active epilepsy was detected in 1.6% of survivors of NNJ and 2.3% of survivors of HIE. All children had normal hearing and visual functioning except one participant who presented with mild visual acuity problems.

Conclusions: Most school-aged children who survive with NNJ and HIE have normal motor and communication function; however, one in ten are likely to present with lowered intellectual functioning compared to the normative sample.

Keywords
Neonates, jaundice, hypoxic-ischemic encephalopathy, cognition, motor, communication, disability, sub-Saharan Africa

Corresponding author: Dorcas N. Magai (dmagai@kemri-wellcome.org)

Author roles:
- Magai DN: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
- Newton CR: Conceptualization, Investigation, Methodology, Supervision, Validation, Writing – Review & Editing
- Mwangi P: Data Curation, Formal Analysis, Methodology, Software, Visualization, Writing – Review & Editing
- Koot HM: Conceptualization, Methodology, Supervision, Writing – Review & Editing
- Abubakar A: Conceptualization, Data Curation, Investigation, Methodology, Resources, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported through the DELTAS Africa Initiative [DEL-15-003]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)'s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa's Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [107769/Z/10/Z] and the UK government. The views expressed in this publication are those of the author(s) and not necessarily those of AAS, NEPAD Agency, Wellcome Trust, or the UK government.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Magai DN et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Magai DN, Newton CR, Mwangi P et al. Patterns of neurobehavioral functioning in school-aged survivors of neonatal jaundice and hypoxic-ischemic encephalopathy in Kilifi, Kenya: A cross-sectional study [version 1; peer review: 2 approved with reservations, 1 not approved] Wellcome Open Research 2019, 4:95 https://doi.org/10.12688/wellcomeopenres.15200.1

First published: 12 Jun 2019, 4:95 https://doi.org/10.12688/wellcomeopenres.15200.1
Introduction

Neonatal jaundice (NNJ) and hypoxic-ischemic encephalopathy (HIE) are common insults during the neonatal period. These insults have both short-term and long-term impacts on children’s functioning. The global incidence of severe NNJ is estimated at 9.9 per 10,000 live births among children. Africa has the highest burden of severe NNJ with incidence rates of 667.8 per 10,000 live births (95% CI 603-738%). HIE is caused by different factors, such as uterine rupture, placenta abruption, cord prolapse, maternal hypotension, and obstructed labour, which either impair the supply of blood and oxygen to the brain before, during or immediately after the birth of the baby. The incidence of HIE globally is estimated at 1.5 per 1000 live births (95% CI 1.3-1.7) and it is associated with poor neurocognitive outcomes.

The overall burden of NNJ and HIE in neonates admitted to Kilifi County Hospital in Kenya increased between 1990 and 2008 significantly by 6% and 11%, respectively. They were the second and third most common neonatal conditions after sepsis (13%). In 2015, 32% of neonatal mortality was caused by HIE and birth trauma in Kenya.

Studies in high-income countries have reported that school-aged children who survive NNJ and HIE develop adverse long-term neurocognitive outcomes, although long-term outcomes of NNJ tend to be less severe. However, to the best of our knowledge, there are no studies on long-term neurocognitive outcomes in school-aged children who survived NNJ and HIE in sub-Saharan Africa (SSA) despite the high burden of NNJ and HIE in this context. This study investigated the patterns of functioning in school-aged children who survived NNJ or HIE in Kilifi, Kenya.

Methods

Study design

This is a cross-sectional study that examined the neurobehavioral patterns of functioning of school-aged children (6–12 years) who survived NNJ and HIE.

Study site

This study was conducted at the Centre for Geographic Medicine Research-Coast (CGMR-C) located in Kilifi County, at the North Coast of Kenya. The study used the Kilifi Health and Demographic Surveillance System (KHDSS) to identify and recruit a well-defined cohort of school-aged children who were admitted to the Kilifi County Hospital in the first 28 days of life with NNJ or HIE and for whom neonatal data were available. Participants were recruited and assessed from September to December 2017. Assessments were carried out by trained research assistants under the supervision of a psychologist (DM) at the CGMR-C neuro-assessment unit, during which participants were accompanied by their mother or a primary caregiver in the absence of the mother.

Participants and procedures

We utilized the KHDSS to identify and trace survivors. Participants were recruited in the study if they had a diagnosis of NNJ or HIE during the first 28 days of life; were aged between 6 to 12 years at the time of follow-up; parental consent was obtained; and they were living within the area covered by the KHDSS. Participants were excluded if they did not consent to the study.

Diagnosis

The diagnosis of NNJ was based on clinical laboratory measurement of total serum bilirubin (TSB) as well as medical history and examination during the first 28 days of life. NNJ was defined as a TSB level of >85 µ/mols/l recorded to the clinical notes. Severe hyperbilirubinemia was defined as TSB of >250 µ/mols/l. HIE diagnosis was based on the clinical diagnosis recorded by the clinicians at discharge. Severe disability was defined as the impairment in body structure which results in significant loss and difficulty for a participant to perform a task.

Screening tools

A set of screening tools were used to describe the level of functioning and patterns of disability among participating children. Anthropometric data (weight, height, head circumference, and Mid Upper Arm Circumference) were obtained based on the World Health Organization (WHO) standards. Screening assessments were done for gross motor functioning, communication functioning, intellectual disability, and epilepsy. The participants were screened for hearing and visual acuity using an auditory brainstem response machine and the Snellen and E-Chart, respectively. Almost all the participants had normal hearing and vision functioning except one who had mild vision problems.

The Gross Motor Function Classification System (GMFCS) was used to measure gross motor functioning. The GMFCS tool was devised by Peter Rosenbaum and colleagues to determine the level that best describes a participant’s current abilities and limitations in gross motor function. The GMFCS classifies children into 5 levels: Level I, the child can walk to various places and climb stairs without using rails and can jump and run with ease, although some children might have limitations in motor coordination while performing such gross motor functions; Level II, the child has limitations in outdoor activities; Level III, the child needs support to move; Level IV, the child needs technological assistance to move; Level V, the child’s movement is completely restricted, and they need complete assistance to move. The caregiver is asked to choose the best description of their child, which shows the child’s level of gross motor functioning. The GMFCS has good interrater agreement [Kappa 0.76 to 0.88; intraclass correlation coefficient (ICC) ranging from 0.89 to 0.95].

Communication functioning was assessed using the Adapted Communication Profile. This tool captures the child’s language abilities through a caregiver report. The caregiver is asked questions about the child’s communication abilities and asked to indicate the level of problems his/her child has for the subscales social communication functions, receptive communication functions, and communication effectiveness, and this is rated using scores of 0= not a problem, 1= a bit of a problem, and 3= a big
The scores are then summed for each participant. The Adapted Communication Profile is contextually relevant and has previously been used with children in Kilifi; however, its psychometric properties in Kenya are yet to be established.

The Raven’s coloured progressive matrices (RCPM) was administered to assess intellectual functioning. The RCPM is made up of a series of patterns with a missing part, which the participant completes by choosing from several options. The multi-choice items require abstract reasoning. This test has been validated and previously used in children in Kilifi, Kenya and has good internal consistency (Cronbach alpha = 0.81) and test-retest reliability (ICC = 0.77). The test has good construct validity in the Kenyan population.

The epilepsy screening tool was used to screen for epilepsy in this study sample. This tool was validated using a three-stage screening methodology for detecting active epilepsy in Kilifi, Kenya. Active epilepsy was defined as two or more unprovoked seizures occurring within the last 12 months, or on anti-epileptic treatment.

Study size
As per the KHDSS records by December 2017, of the 280 cases with NNJ admitted between 2005 and 2012, 17 (6.1%) children died before discharge, 15 (5.4%) died after discharge, while 67 (23.9%) had migrated from the KHDSS and their survival could not be determined. Of the 378 neonates who were admitted with HIE between 2005 and 2012, 117 (31.0%) died before discharge, and 16 (4.2%) died after discharge. However, 79 (20.9%) had migrated from the KHDSS and their survival could not be determined.

The recruitment, and assessment processes are indicated in Figure 1. Out of the 658 survivors of NNJ and HIE, 347 survivors were identified, 121 were followed up and visited at home for recruitment, and 107 participants aged 6–12 years were included in this study.

Statistical analysis
Data were collected, entered, and managed using REDCap, an electronic data capture tool hosted at the CGMR-C, and analysed using STATA (version 15). The anthropometric variables Weight-for-Age (WAZ) and Height-for-Age (HAZ) were standardized using WHO Anthro plus. An abnormal nutritional status (stunted growth or underweight) was considered if the z-scores obtained from WHO Anthro plus were below -2 standard deviation (SD). Descriptive statistics such as means, medians, and percentages were used to describe sample characteristics and to summarize gross motor, language, and intellectual functioning and history of epilepsy. The cognitive and epilepsy outcomes of these children were compared to the normative data obtained from a study conducted in 2016 with 11,223 children aged 6 to 9 years randomly selected from the Kenyan community to estimate the burden of neurological impairments. Cognitive impairment was defined as total Ravens Z-scores below -2 SD. The 95% confidence interval (CI) were calculated using the Clopper-Pearson exact method. A sub-analysis was conducted with participants with severe hyperbilirubinemia on all outcomes and comparable results were obtained. Therefore, we report data with all participants with TSB of >85 µ/mol/l.

Results
Demographic characteristics of participants
In this study, of the 107 included participants, 64 survived NNJ (31 females and 33 males) and 43 survived HIE (29 females and 14 males). The median age of the participants was 10 [interquartile range (IQR) = 5–12] years. These participants had normal anthropometric measures; none of the participants were underweight or had stunted growth. All participants had normal hearing and visual functioning except one who had visual acuity problems. The mean WAZ was -1.3 (SD = 0.9) and -1.0 (SD = 1.6), while the mean HAZ was -1.1 (SD = 1.1) and -0.8.

Refusals (n=4)
Reasons for refusal
Parents argued that their children were doing well and there was no need for participating

Not found at home after 3 follow-ups (n=7)

Homes visited (N=121)

n=107
Participated in the study

Did not turn up (n=3)

Consented (n=110)

Figure 1. Participants visited, recruited, and assessed.
(SD = 1.5) for NNJ and HIE, respectively. Table 1 presents a summary of these results (see underlying data).

Neurobehavioral functioning

Gross motor functioning. As indicated in Table 2, almost all survivors of NNJ (95.2%) and HIE (95.3%) had level I gross motor functioning while 4.8% and 4.7% survivors of NNJ and HIE respectively had level II functioning, as assessed by the GMFCS.

Language functioning. Most of the children who survived NNJ and HIE did not have any problems in communication functioning (Table 2). Of the survivors of NNJ, 4.7%, 3.1%, 3.1%, 4.7%, and 4.7% had profound problems in their communication modes, expressive communication functions, social communication functions, receptive communication, and communicative effectiveness, respectively. Of the survivors of HIE, 4.7%, 4.7%, 2.3%, 2.3%, and 2.3% had a significant problem in their communication modes, expressive communication functions, social communication functions, receptive communication, and communicative effectiveness, respectively.

Table 1. Demographic characteristics of participants.

<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
<th>N= 107</th>
<th>NNJ n (%) = 64 (59.8)</th>
<th>HIE n (%) = 43 (40.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), Median [IQR]</td>
<td>10 [5-12]</td>
<td>10 [6-12]</td>
<td>8 [5-12]</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45 (68.9)</td>
<td>31 (53.2)</td>
<td>29 (31.1)</td>
</tr>
<tr>
<td>Male</td>
<td>62 (42.1)</td>
<td>33 (46.8)</td>
<td>14 (36.1)</td>
</tr>
<tr>
<td>Anthropometric data, Mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid upper arm circumference (cm)</td>
<td>17.5 (2.5)</td>
<td>17.7 (2.7)</td>
<td>17.2 (2.0)</td>
</tr>
<tr>
<td>WAZ</td>
<td>-1.1 (1.3)</td>
<td>-1.3 (0.9)</td>
<td>-1.0 (1.6)</td>
</tr>
<tr>
<td>HAZ</td>
<td>-1.0 (1.3)</td>
<td>-1.1 (1.1)</td>
<td>-0.8 (1.5)</td>
</tr>
</tbody>
</table>

Note: NNJ- neonatal jaundice; HIE- hypoxic-ischemic encephalopathy; WAZ- weight-for-age; HAZ- height-for-age; IQR- Interquartile Range; n-number of participants

Table 2. Patterns of functioning in children who survived NNJ and HIE.

<table>
<thead>
<tr>
<th>Type of functioning</th>
<th>NNJ N (%)</th>
<th>HIE N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMFCS Levels of functioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level I</td>
<td>59 (95.2)</td>
<td>41 (95.3)</td>
</tr>
<tr>
<td>Level II</td>
<td>3 (4.8)</td>
<td>2 (4.7)</td>
</tr>
<tr>
<td>Level III</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Level IV</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Level V</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Communication Functioning n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communicative modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td>58 (90.6)</td>
<td>40 (93.0)</td>
</tr>
<tr>
<td>A bit of a problem</td>
<td>1 (1.6)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>A big problem</td>
<td>3 (4.7)</td>
<td>2 (4.7)</td>
</tr>
<tr>
<td>Expressive communication functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td>60 (93.8)</td>
<td>41 (95.3)</td>
</tr>
<tr>
<td>A bit of a problem</td>
<td>1 (1.5)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>A big problem</td>
<td>3 (4.7)</td>
<td>2 (4.7)</td>
</tr>
</tbody>
</table>
functions, social communication functions, receptive communication and communicative effectiveness, respectively (Table 2).

Intellectual functioning
The median IQ score based on performance on the RCPM was 12.8 (IQR = 9.5 - 16.5) for children who survived NNJ and 13.0 (IQR = 10.0 - 18.0) for the HIE group. As shown in Table 2, 10.9% of the children in the NNJ group and 11.6% of the children in the HIE group had a cognitive impairment. The prevalence of cognitive impairment in survivors of NNJ [10.9% (95%CI = 4.5 - 21.2) per 100] and HIE [11.6% (95% CI = 3.9 - 25.1) per 100] was twenty times higher than in the normative group [0.5% (95% CI = 0.3 - 0.6) per 100], p <0.001 (Table 3).

History of epilepsy
As shown in Table 2, 1.6% of survivors of NNJ and 2.3% of survivors of HIE had active epilepsy. There was no significant difference in the prevalence of active epilepsy in survivors of NNJ [1.6% (CI = 0.0 - 8.4) per 100] and HIE [2.3% (CI = 0.0 - 12.3) per 100] versus the normative group [0.5% (CI = 0.4 - 0.6) per 100], p >0.05 (Table 3).

Discussion
This study investigated the patterns of neurobehavioral functioning in children who survived NNJ and HIE in Kilifi, Kenya. The results of this study show that most of the children who survived NNJ and HIE had normal vision, hearing, motor functioning, communication functioning, and no seizure disorder on screening tests. However, compared to the normative sample, the NNJ and HIE participants had poorer intellectual functioning.

The findings of this study suggest that most children who survived NNJ had normal vision, hearing, motor functioning, and communication functioning but had poorer intellectual functioning compared to the normative sample.

Our study found that children who survived NNJ have normal hearing and visual functioning. This finding contradicts the results of a study by Martínez-Cruz et al. who evaluated the frequency of sensorineural hearing loss (SNHL) in children aged 2 to 10 years with a history of exchange transfusion. The authors reported a high frequency (15%) of SNHL in survivors of NNJ.

<table>
<thead>
<tr>
<th>Type of functioning</th>
<th>NNJ</th>
<th>HIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%), N= 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social communication functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td>59 (92.2)</td>
<td>41 (95.3)</td>
</tr>
<tr>
<td>A bit of a problem</td>
<td>3 (4.7)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>A big problem</td>
<td>2 (3.1)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Receptive communication functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td>60 (93.8)</td>
<td>42 (97.7)</td>
</tr>
<tr>
<td>A bit of a problem</td>
<td>1 (1.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>A big problem</td>
<td>3 (4.7)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Communicative Effectiveness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td>60 (93.8)</td>
<td>42 (97.7)</td>
</tr>
<tr>
<td>A bit of a problem</td>
<td>1 (1.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>A big problem</td>
<td>3 (4.7)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Raven Total scores Median (IQR)</td>
<td>12.8 (9.5-16.5)</td>
<td>13.0 (10.0-18.0)</td>
</tr>
<tr>
<td>Cognitive impairment n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (10.9)</td>
<td>5 (11.6)</td>
</tr>
<tr>
<td>No</td>
<td>57 (89.0)</td>
<td>38 (88.4)</td>
</tr>
<tr>
<td>History of epilepsy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of active Epilepsy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (1.6)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>No</td>
<td>62 (96.9)</td>
<td>38 (90.5)</td>
</tr>
</tbody>
</table>
However, the children in that study were also reported to have a substantial risk of comorbidities such as cerebral palsy (20%) and epilepsy (20%), unlike in our study where 1.6% of the NNJ survivors had active epilepsy. The difference in the prevalence of epilepsy in these two studies could be because of difference in the severity of NNJ. Unlike in the current study where severe hyperbilirubinemia was defined as TSB of >250 µmol/L, the participants in Martínez-Cruz and colleagues' study had severe NNJ defined as an increase in bilirubin by >0.5 mg/dL and >0.3 mg/dL per hour in term and preterm infants, respectively, and required exchange transfusion. Therefore, the SNHL could be a result of the loss and alterations of neurons caused by the motor disorders and deposition of bilirubin in the nuclei involved in the auditory pathway. Similar to the findings of Kara et al., who evaluated children aged 3 to 5 years who survived NNJ, the current study did not find any visual abnormality in survivors of NNJ.

Additionally, the findings of this study are consistent with results by Chen et al., who report normal motor and neurodevelopmental outcomes after three years of age in a five-year follow-up study of 128 survivors of NNJ. A few studies have reported poor long-term cognitive functions in survivors of NNJ. The results that survivors of NNJ have poor cognitive outcomes corroborate findings by Hokkanen et al., who reported that at 30 years, 40% of survivors of severe NNJ had poor cognitive functions that continued from childhood to adulthood.

Patterns of neurobehavioral functioning of school-aged children who survived HIE

The findings of this study suggest that children who survived HIE have normal vision, hearing, motor functioning, and communication functioning, but have poorer intellectual functioning compared to the normative sample. The finding that survivors of HIE have normal vision and hearing functioning corroborates the results of Mietzsch et al., who investigated auditory function in neonates treated with hypothermia. These authors report that although peripheral acoustic functions were altered for the neonates in their study during the first week, they normalized by week 3. A follow-up of the cohort at 18 to 30 months also showed normal visual functioning in these children. In contrast to Mercuri and colleagues, who investigated the visual function in infants aged 5 to 31 months and reported multiple ocular abnormalities in children who survived HIE, our study found normal vision functioning in the survivors of HIE. However, the difference in findings could be due to the differences in the age of participants in these two studies (5 to 31 months in the Mercuri et al. study versus 6 to 12 years in our study) and that many of neonates discharged following HIE died in the community.

These findings are similar to those reported by Hayes et al., who did not find any motor, language, and emotional and behavioural problems impairments among 146 survivors of HIE without cerebral palsy. Similarly, Van Kooi et al., and Roberson et al. did not find significant impairment in survivors of mild HIE motor and school performance respectively compared to the control groups. However, unlike the findings of Hayes et al., who did not find any cognitive impairment in their sample, our results show that survivors of HIE have poorer cognitive outcomes compared to the normative sample. The difference in results could be due to the difference in age groups in the two samples. Since the current study had an older age group, it is likely that the cognitive deficits reflect a cumulative effect. It should be noted that the cognitive outcomes for this sample (median age 10 years) were compared to normative data from a younger sample (age 6–9 years), which implies that the number of children with cognitive impairment found in our study may be an underestimation.

Lastly, it should be noted that the normal functioning reported in this study was found in a sample consisting of children who survived beyond age 6. There is a possibility that the cases with worse outcomes died before age 6 years thus, their data are unavailable for this study. The mortality rates of children with neonatal insults in SSA are high due to limited quality care. For instance, in severe NNJ needing exchange transfusion or HIE requiring hypothermia, provision of adequate personnel, monitoring facilities, and finances are limited, unlike in developed countries where there are available resources and personnel to provide quality care. Therefore, it is likely that most children with mild impairment survived the neonatal insults.

Limitations of the study

These study findings should be interpreted taking several limitations into account. First, most of the children with severe disabilities may have died before they reached the age of 6–12 years, thus this represents a survivor cohort. Only two out of the 107 participants were severely disabled, the prevalence of severe disability in the sample was 1.9% (0.46 - 7.32).

Table 3. Cognitive and epilepsy outcome in NNJ and HIE cases versus normative group.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>NNJ cases (N=64)</th>
<th>Normative data (N=11,232)</th>
<th>Statistical tests</th>
<th>HIE cases (N=43)</th>
<th>Normative data (N=11,232)</th>
<th>Statistical tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive impairment</td>
<td>7</td>
<td>51</td>
<td>(χ²(1) = 136.8, (P < 0.001))</td>
<td>5</td>
<td>51</td>
<td>(χ²(1) = 108.1, (P < 0.001))</td>
</tr>
<tr>
<td>Active epilepsy</td>
<td>1</td>
<td>54</td>
<td>(χ²(1) = 1.5, (P = 0.215))</td>
<td>1</td>
<td>54</td>
<td>(χ²(1) = 3.0, (P = 0.083))</td>
</tr>
</tbody>
</table>

Note: NNJ- neonatal jaundice; HIE- hypoxic-ischemic encephalopathy.
Data collection on severe disability was discontinued. Second, the motor and communication assessment tools used in this study were screening instruments, which may not have captured important aspects of these outcomes. Third, potential risk factors such as socioeconomic factors, maternal education and maternal mental health, and parenting factors that are likely to affect neurodevelopmental outcomes were not considered in this study. Lastly, due to inconsistencies in clinical documentation of bilirubin levels at admission and Apgar scores, it was not possible to add estimates of the severity of illness in the children we followed up and those whom we were not able to follow-up.

Conclusion
Based on the screening tools used, survivors of HIE and NNJ in Kilifi, Kenya, do not experience challenges in motor and communication functioning. Additionally, their nutritional status was normal. However, a substantial proportion of them are likely to have impaired cognition compared to the normative sample. It is likely that the children who were followed up had mild impairments while those with severe outcomes did not survive.

Ethical statement
Ethical approval for this study was granted by the Kenya Medical Research Institute Scientific and Ethics Review Unit (SERU); protocol number 092/3470. The primary caregivers of the children were informed about the study and their written informed consent for them and their children to take part in the study was obtained. Assent was also obtained from the children who took part in the study. Additional permission was obtained from the Kilifi County Office, and the Kilifi County Director of Education as most of the participants were school going children. Confidentiality and anonymity were maintained in all stages of data management and analysis.

Data availability
Underlying data

This project contains the following underlying data:

- ndd_nemo_cogn_impair_ravens_ae_20190503.tab (Data used in calculating the prevalence of Cognitive and epilepsy outcome in Neonatal Jaundice (NNJ) and Hypoxic Ischemic Encephalopathy (HIE) cases versus normative group)
- NEMO analysis do.do (STATA v15.1 analysis script)
- NEMO_Phase1_Data Readme File.txt (Readme file containing information on the related research study, terms of access, citation requirements as well as methods of processing)
- NEMO_screening_dataset_codebook_english.pdf (Variable codebook containing description, value labels and format - English Version)
- NEMO_screening_dataset_Codebook_Swahili.pdf (Variable codebook containing description, value labels and format - Swahili)
- NEMO_screening_data_subset.tab (Data collected from the participants who survived neonatal insults)
- Prevalence-nemo.do (Stata script used to calculate prevalence)
- prevalence_nemo_data_20190520.tab (Dataset used to calculate prevalence)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information
This work was supported through the DELTAS Africa Initiative [DEL-15-003]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [107769/Z/10/Z] and the UK government. The views expressed in this publication are those of the author(s) and not necessarily those of AAS, NEPAD Agency, Wellcome Trust, or the UK government.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We thank the children and their primary caregivers who took part in this study. Special appreciation to the fieldworker Javan Nyale who visited the children in their homesteads and recruited them in this study; and Samuel Mwasambu and Patricia Mwangunya who assessed the children. We acknowledge permission from the Director of Kenya Medical Research Institute (KEMRI) to publish this work.

References

Publisher Open Research 2019, 4:95 Last updated: 29 JUL 2021

In this cross-sectional retrospective study, the authors set out to investigate the neurodevelopmental outcome of infants born with neonatal jaundice and hypoxic ischemic encephalopathy in low-resource setting and for that the authors are to be commended. This information is urgently needed if we are to get the appropriate resources, infra-structure and governmental support to eliminate or at least significantly decrease these diseases and the long-term consequences for children who survive these insults as neonates. This article is especially noteworthy in that the study team includes experts in neurodevelopment from the Kenya Medical Research Institute (KEMRI).

However, there are several significant issues with the study that significantly impact the interpretation of the results. First, it is unclear how the authors define neonatal jaundice and hypoxic ischemic encephalopathy. Notably, a serum bilirubin of 85 micromoles/liter would not be expected to cause any problems except perhaps for the extremely low-birth weight infants. Even 250 micromoles/liter would rarely be expected to cause motor or developmental problems. Furthermore, the complete absence of any children with deafness along with the lack of other markers of severe neonatal jaundice such as the need for exchange transfusion or even phototherapy make it unlikely that the population included in this study were at risk for neurodevelopmental delay from neonatal jaundice. The only possible marker of acute bilirubin encephalopathy they recorded is death. While death certainly is a marker of severe neonatal jaundice, it can be the result of multiple other pathological processes. Unfortunately, the authors do not clarify whether the death was related to jaundice or not, leaving this uncertainty open to interpretation. It follows that the lack of markers for acute bilirubin encephalopathy confounds any possible relationship between the observed (or lack thereof) neurodevelopmental problems and hyperbilirubinemia. In fact, low levels of bilirubin (as reported in this study) have been
postulated to be neuroprotective not harmful. The study would have been much more meaningful
had the authors looked at children who had had suffered from truly severe neonatal
hyperbilirubinemia and/or acute bilirubin encephalopathy.

Diagnosis of hypoxic ischemic encephalopathy by “clinical diagnosis” at discharge is also too non-
specific to have any idea of the group of neonates being discussed. The authors give no indication
of the degree of hypoxic ischemic encephalopathy and thus, as with neonatal jaundice, the
interpretation of a possible causal relationship with neurodevelopmental delay in school age
children remains uninterpretable. In addition, the authors do not clarify the training of the
clinicians making the diagnosis of HIE or how this diagnosis was validated, further complicating
any possible meaningful interpretation of the observed results.

There is no comment regarding neonates who had both neonatal jaundice and hypoxic ischemic
encephalopathy. Asphyxiated neonates would be expected to higher risk for acute bilirubin
encephalopathy and long-term problems, but this group is not addressed by the authors.

Because of the flaws mentioned above, the study as currently presented, does not add sustainably
to our understanding of the true magnitude of neurodevelopmental problems from either
neonatal jaundice or hypoxic ischemic encephalopathy. The study may be meaningful If the
authors add substantial clarification of their patient populations and demonstrate why the
selected populations would be expected to potentially have an increased risk of
neurodevelopmental problems from either neonatal jaundice or hypoxic encephalopathy.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My primary area of research is severe neonatal jaundice, its preventions,
diagnosis, treatment and follow-up. I also have interest in breast feeding in LMICs and bubble
CPAP/respiratory support beyond the neonate.
We confirm that we have read this submission and believe that we have an appropriate level of expertise to state that we do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Dorcas Magai, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Response to Reviewer Comments

Reviewer 1: Tina Slusher

1. Notably, a serum bilirubin of 85 micromoles/litre would not be expected to cause any problems except perhaps for the extremely low-birth weight infants. Even 250 micromoles/litre would rarely be expected to cause motor or developmental problems. Furthermore, the complete absence of any children with deafness along with the lack of other markers of severe neonatal jaundice such as the need for exchange transfusion or even phototherapy make it unlikely that the population included in this study were at risk for neurodevelopmental delay from neonatal jaundice.

 The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 µ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor, Denison, Beyai, & Owens, 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman, Stark, & Bhutan, 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 µmol/l.

 We have amended the document to include the above information. Phototherapy was considered if they had any visible jaundice anywhere on the body on day one or TSB> 260 µ/mols/l on day two (WHO, 2013) (page 4).

 We have also included the median and interquartile range (IQR) of TSB values in this study as follows: The median TSB values of the NNJ survivors was 245 (IQR = 144- 322) µ/mols/l (page 7).

2. The only possible marker of acute bilirubin encephalopathy they recorded is death. While death certainly is a marker of severe neonatal jaundice, it can be the result of multiple other pathological processes. Unfortunately, the authors do not clarify whether the death was related to jaundice or not, leaving this uncertainty open to interpretation. It follows that the lack of markers for acute bilirubin encephalopathy confounds any possible relationship between the observed (or lack thereof) neurodevelopmental problems and hyperbilirubinemia. In fact, low levels of bilirubin (as reported in this study) have been
postulated to be neuroprotective not harmful. The study would have been much more meaningful had the authors looked at children who had suffered from truly severe neonatal hyperbilirubinemia and/or acute bilirubin encephalopathy.

- We have addressed this issue in the discussion as follows: Moreover, the information on attribution of neonatal insults to cause of death of children admitted to hospital in this setting is difficult due to lack of investigations. The children in this retrospective study were treated in a busy rural district hospital, and the signs for acute bilirubin toxicity were poorly recorded. The study provides evidence on the neurobehavioral patterns of children who have inadequate information at birth but are admitted to hospital and diagnosed with NNJ or HIE. Given that the challenges in medical records are very common in many settings in Low- and Middle-Income countries this question is important to answer as it addresses the day to day reality of the children in this context (page 9-10).

3. Diagnosis of hypoxic ischemic encephalopathy by “clinical diagnosis” at discharge is also too non-specific to have any idea of the group of neonates being discussed.

- We have amended this part and included the clinical signs of HIE that were used according to the guidelines used by the clinicians for the final diagnosis. HIE diagnosis was given if the child had the following problems after birth; convulsions, inability to suck, apnoea, or poor motor tone (WHO, 2013) (See page 5)

4. The authors give no indication of the degree of hypoxic ischemic encephalopathy and thus, as with neonatal jaundice, the interpretation of a possible causal relationship with neurodevelopmental delay in school age children remains uninterpretable.

- We have addressed this issue in the discussion as follows: During the period when the participants of this study were born (2005 to 2012), most of the births occurred at home and local dispensaries. Therefore, most of the children were either referred to the hospital from the dispensaries or were brought to the hospital when the caregivers noted signs of sickness in their child. Thus, it was impossible to obtain Apgar scores (generally captured at the first 1, 5, and 10 minutes of life) or cord gases for most of the children. For this reason, we are unable to indicate the degree of HIE in this sample. Moreover, there are difficulties in obtaining the gestational age of the neonates (page 10).

5. In addition, the authors do not clarify the training of the clinicians making the diagnosis of HIE or how this diagnosis was validated, further complicating any possible meaningful interpretation of the observed results.

- We have amended and provided the required information about the training of the clinicians. A Medical officer with a bachelor’s degree in medicine and surgery made the diagnosis of NNJ and HIE and this was often discussed with consultant pediatricians who had been trained in Kenya or the United Kingdom (page 4).

6. There is no comment regarding neonates who had both neonatal jaundice and hypoxic ischemic encephalopathy. Asphyxiated neonates would be expected to higher risk for acute bilirubin encephalopathy and long-term problems, but this group is not addressed by the authors.

Because of the flaws mentioned above, the study as currently presented does not add sustainably to our understanding of the true magnitude of neurodevelopmental problems from either neonatal jaundice or hypoxic-ischemic encephalopathy.

- We did not have these cases in this cohort. None of the participants in this study had a diagnosis of both NNJ and HIE as those with a combined diagnosis were excluded from this cohort study (page 4).
Reviewer 2: Deirdre Murray

1. The definition of hyperbilirubinaemia is very vague. They seem to have included all infants with a bilirubin level > 85. The authors do not give a time for this, beyond stating that the measurement took place in the first 28 days. The majority of infants have some level of jaundice, and will reach this level
 ○ The bilirubin was measured on admission, since many of the neonates were born at home, it was difficult to determine the exact age in hours. Moreover, the inclusion criteria included neonates up to 30 days of age as per the definition of neonatal period as used in other studies (Newman, Xiong, Gonzales, & Escobar, 2000). However, despite the inclusion criteria of 0-30 days, the median age of the participants at admission was 3 [interquartile range (IQR) = 0-8] days (page 6-7).

2. They state that they have done a sub analysis in the severe group, but do not tell us the numbers or the results in this group, who are actually the more interesting.
 ○ We have provided the actual numbers of children with hyperbilirubinemia. A sub-analysis was conducted with 25 participants with severe hyperbilirubinemia on all outcomes, and similar results were obtained (page 6).

3. Surprisingly with this low level of hyperbilirubinaemia the outcomes are poor which makes me wonder whether these infants had other underlying diagnoses, such as sepsis, prematurity, IUGR?
 ○ We have addressed this issue in the methods section as follows: Some of the participants had sepsis and preterm birth as a secondary diagnosis. For NNJ 23 had neonatal sepsis, and 6 were preterm. In the HIE group, 5 had sepsis, and 2 were preterm. However, based on another study that we conducted, sepsis did not appear to aggravate the developmental outcomes of children with neonatal jaundice and sepsis (Magai et al., 2020) (page 5).

4. The follow up rate was low. they state that 347 survivors were identified and 121 were followed up. Please explain why the other 227 were not followed?
 ○ This explanation is given under limitations in the discussion section as follows: Given that this study was designed to screen out children with severe disability (they could not be able to carry out tasks during assessment) and only two out of the 107 participants were severely disabled, the prevalence of severe disability in the sample was 1.9% (0.46 -7.32). Data collection on children with severe disability was discontinued (page 10) as we had reached the needed sample size to determine the severity of disability in these children.

5. They have stated in their discussion the other major limitation: the fact that it is likely that a high proportion of children; those with moderate or severe HIE are likely to have died. If the authors could focus on this as a study of outcome following HIE, reporting mortality and survival, with outcome to 10 years then this would be a very valuable article and would add significantly to the literature.
 ○ Plans to study the mortality and survival of NNJ and HIE are underway in future studies. However, in this study, our main research question in the current study was to understand the neurobehavioral patterns of survivors of NNJ and HIE.

6. Minor points:
 How did the WAZ and HAZ scores compare to the general population? Do they have this data?
 ○ We have addressed this issue as follows: The WAZ and HAZ scores of these children were
compared to the WAZ and HAZ scores for children in the general population obtained in a study conducted in 2003 with 184 children aged 8 to 11 years (page 6). The mean WAZ was -1.3 (SD = 0.9), -1.0 (SD = 1.6), and -1.2 (SD = 1.1) while the mean HAZ was -1.1 (SD = 1.1), -0.8 (SD = 1.5), and -1.3 (SD = 1.1) for NNJ, HIE, and for the general population respectively. There were no significant differences in the WAZ [F (2, 196) = 0.5, P = 0.623] and HAZ [F (2, 285) = 2.6, P = 0.077] scores between the cases and the general population (Page 7).

7. The first paragraph of the discussion is repeated twice in the second paragraph.
 ○ We have revised this part and deleted the repetition as needed.

Reviewer 3: Bolajoko O Olusanya

1. The clinical profile of the participants as neonates is quite deficient and does not provide an objective basis for evaluating the risks of neurodevelopmental disorders. For example, the operational definitions of NNJ used in the study are rarely associated with neurodevelopmental disorders. NNJ is generally benign except in children with or at risk of acute bilirubin encephalopathy (ABE). Since the authors acknowledged inconsistencies in clinical documentation of bilirubin levels at admission (and presumably on discharge also), it would have been useful to identify those who received phototherapy and/or exchange transfusion as proxies for identifying participants with severe NNJ. This is even more crucial in a developing country like Kenya where delays in receiving appropriate care are not uncommon (see Olusanya et al. (2014)).
 ○ The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 μ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor et al., 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman et al., 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 μmol/l.
 ○ We have amended the document to include the above information. *Phototherapy was considered if there were any visible jaundice anywhere on the body on day one or TSB>260 μ/mols/l (WHO, 2013)* (page 4).

2. The study suggests that the clinical diagnosis of HIE was based on Apgar scores. Please clarify and report the criteria for HIE.
 ○ HIE diagnosis was not based on Apgar scores. We have amended this part and included the clinical signs of HIE that were used according to WHO guidelines. *HIE diagnosis was given if the child had the following problems after birth; convulsions, inability to suck, apnoea, or poor motor tone (WHO, 2013)* (See page 4).
3. It is unclear why the authors opted for auditory brainstem response (ABR) in these school-aged children rather than pure-tone audiometry which is a more accurate and common measure of auditory threshold, especially in resource-limited settings. The authors need to provide details of the type of ABR and the methodology employed for hearing screening in their population.

- We have added details on the type of audiometry machine and the methodology employed: The participants were screened for hearing and visual acuity using a pure-tone audiometry machine-Kamplex model R17A AUD Type 3 (Harlor & Bower, 2009) and the Snellen and E-Chart, respectively. For audiometric testing, first, we talked to the participants while walking towards the sound-proof assessment room to assess how well they are hearing. We then inspected their ear canals using an otoscope. We then instructed the participants to push the button when they hear a sound through the headphones and tested to see if the instructions were clear. We started at 1000 Hz and decreased the level by 10dB until no response was obtained. We then increased the level by 5 Db steps until a reply was captured again. We did these steps until the lowest level at which the participant responded was received. We continued with this procedure at 2000 Hz, 4000 Hz, 500 Hz, 250 Hz, and 125 Hz for both ears. Almost all the participants had normal hearing and vision functioning except one who had mild vision problems (page 4-5).

References
Taylor, R., Denison, F., Beyai, S., & Owens, S. (2010). The external Ballard examination does not accurately assess the gestational age of infants born at home in a rural community of

Competing Interests: No competing interests

Reviewer Report 09 August 2019

https://doi.org/10.21956/wellcomeopenres.16585.r35858

© 2019 Murray D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deirdre Murray
Department of Paediatrics and Child Health, University College Cork, Cork, Ireland

The authors deserve credit for performing this study in a developing country. Data on outcome following HIE is very sparse in Sub Saharan Africa, so this information would be very important for planning therapeutic trials. However it feels like they are addressing two very different questions in the two conditions studied. My main concerns are as follows:

The definition of hyperbilirubinaemia is very vague. They seem to have included all infants with a bilirubin level > 85. The authors do not give a time for this, beyond stating that the measurement took place in the first 28 days. The majority of infants have some level of jaundice, and will reach this level. They state that they have done a sub analysis in the severe group, but do not tell us the numbers or the results in this group, who are actually the more interesting.

Surprisingly with this low level of hyperbilirubinaemia the outcomes are poor which makes me wonder whether these infants had other underlying diagnoses, such as sepsis, prematurity, IUGR?

Similarly no grades are given for HIE. However this is understandably difficult in a retrospectively study. More detailed neonatal information regarding these infants; Apgar score, severity of encephalopathy would be more informative if available.

The follow up rate was low. they state that 347 survivors were identified and 121 were followed up. Please explain why the other 227 were not followed?

They have stated in their discussion the other major limitation: the fact that it is likely that a high proportion of children; those with moderate or severe HIE are likely to have died. If the authors could focus on this as a study of outcome following HIE, reporting mortality and survival, with outcome to 10 years then this would be a very valuable article and would add significantly to the
Minor points:
How did the WAZ and HAZ scores compare to the general population? Do they have this data?

The first paragraph of the discussion is repeated twice in the second paragraph.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Perinatal brain injury, hypoxic ischaemic encephalopathy, neurodevelopment outcome.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 27 Feb 2020

Dorcas Magai, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Response to Reviewer Comments

Reviewer 1: Tina Slusher

1. Notably, a serum bilirubin of 85 micromoles/litre would not be expected to cause any problems except perhaps for the extremely low-birth weight infants. Even 250 micromoles/litre would rarely be expected to cause motor or developmental problems. Furthermore, the complete absence of any children with deafness along with the lack of other markers of severe neonatal jaundice such as the need for exchange transfusion or even phototherapy make it unlikely that the population included in this study were at risk
for neurodevelopmental delay from neonatal jaundice.

- The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 µ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor, Denison, Beyai, & Owens, 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman, Stark, & Bhutan, 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 µmol/l/.

- We have amended the document to include the above information. Phototherapy was considered if they had any visible jaundice anywhere on the body on day one or TSB> 260 µ/mols/l on day two (WHO, 2013) (page 4).
- We have also included the median and interquartile range (IQR) of TSB values in this study as follows: The median TSB values of the NNJ survivors was 245 (IQR = 144- 322) µ/mols/l (page 7).

2. The only possible marker of acute bilirubin encephalopathy they recorded is death. While death certainly is a marker of severe neonatal jaundice, it can be the result of multiple other pathological processes. Unfortunately, the authors do not clarify whether the death was related to jaundice or not, leaving this uncertainty open to interpretation. It follows that the lack of markers for acute bilirubin encephalopathy confounds any possible relationship between the observed (or lack thereof) neurodevelopmental problems and hyperbilirubinemia. In fact, low levels of bilirubin (as reported in this study) have been postulated to be neuroprotective not harmful. The study would have been much more meaningful had the authors looked at children who had suffered from truly severe neonatal hyperbilirubinemia and/or acute bilirubin encephalopathy.

- We have addressed this issue in the discussion as follows: Moreover, the information on attribution of neonatal insults to cause of death of children admitted to hospital in this setting is difficult due to lack of investigations. The children in this retrospective study were treated in a busy rural district hospital, and the signs for acute bilirubin toxicity were poorly recorded. The study provides evidence on the neurobehavioral patterns of children who have inadequate information at birth but are admitted to hospital and diagnosed with NNJ or HIE. Given that the challenges in medical records are very common in many settings in Low- and Middle-Income countries this question is important to answer as it addresses the day to day reality of the children in this context (page 9-10).

3. Diagnosis of hypoxic ischemic encephalopathy by “clinical diagnosis” at discharge is also too non-specific to have any idea of the group of neonates being discussed.

- We have amended this part and included the clinical signs of HIE that were used according to the guidelines used by the clinicians for the final diagnosis. HIE diagnosis was given if the child had the following problems after birth; convulsions, inability to suck,
4. The authors give no indication of the degree of hypoxic ischemic encephalopathy and thus, as with neonatal jaundice, the interpretation of a possible causal relationship with neurodevelopmental delay in school age children remains uninterpretable.

- We have addressed this issue in the discussion as follows: During the period when the participants of this study were born (2005 to 2012), most of the births occurred at home and local dispensaries. Therefore, most of the children were either referred to the hospital from the dispensaries or were brought to the hospital when the caregivers noted signs of sickness in their child. Thus, it was impossible to obtain Apgar scores (generally captured at the first 1, 5, and 10 minutes of life) or cord gases for most of the children. For this reason, we are unable to indicate the degree of HIE in this sample. Moreover, there are difficulties in obtaining the gestational age of the neonates.

5. In addition, the authors do not clarify the training of the clinicians making the diagnosis of HIE or how this diagnosis was validated, further complicating any possible meaningful interpretation of the observed results.

- We have amended and provided the required information about the training of the clinicians. A Medical officer with a bachelor’s degree in medicine and surgery made the diagnosis of NNJ and HIE and this was often discussed with consultant pediatricians who had been trained in Kenya or the United Kingdom.

6. There is no comment regarding neonates who had both neonatal jaundice and hypoxic ischemic encephalopathy. Asphyxiated neonates would be expected to higher risk for acute bilirubin encephalopathy and long-term problems, but this group is not addressed by the authors.

Because of the flaws mentioned above, the study as currently presented does not add sustainably to our understanding of the true magnitude of neurodevelopmental problems from either neonatal jaundice or hypoxic-ischemic encephalopathy.

- We did not have these cases in this cohort. None of the participants in this study had a diagnosis of both NNJ and HIE as those with a combined diagnosis were excluded from this cohort study.

Reviewer 2: Deirdre Murray

1. The definition of hyperbilirubinaemia is very vague. They seem to have included all infants with a bilirubin level > 85. The authors do not give a time for this, beyond stating that the measurement took place in the first 28 days. The majority of infants have some level of jaundice, and will reach this level.

- The bilirubin was measured on admission, since many of the neonates were born at home, it was difficult to determine the exact age in hours. Moreover, the inclusion criteria included neonates up to 30 days of age as per the definition of neonatal period as used in other studies (Newman, Xiong, Gonzales, & Escobar, 2000). However, despite the inclusion criteria of 0-30 days, the median age of the participants at admission was 3 [interquartile range (IQR) = 0-8] days.

2. They state that they have done a sub analysis in the severe group, but do not tell us the numbers or the results in this group, who are actually the more interesting.

- We have provided the actual numbers of children with hyperbilirubinemia. A sub-analysis was conducted with 25 participants with severe hyperbilirubinemia on all outcomes, and similar results were obtained.
3. Surprisingly with this low level of hyperbilirubinaemia the outcomes are poor which makes me wonder whether these infants had other underlying diagnoses, such as sepsis, prematurity, IUGR?
 ○ We have addressed this issue in the methods section as follows: Some of the participants had sepsis and preterm birth as a secondary diagnosis. For NNJ 23 had neonatal sepsis, and 6 were preterm. In the HIE group, 5 had sepsis, and 2 were preterm. However, based on another study that we conducted, sepsis did not appear to aggravate the developmental outcomes of children with neonatal jaundice and sepsis (Magai et al., 2020) (page 5).

4. The follow up rate was low. They state that 347 survivors were identified and 121 were followed up. Please explain why the other 227 were not followed?
 ○ This explanation is given under limitations in the discussion section as follows: Given that this study was designed to screen out children with severe disability (they could not be able to carry out tasks during assessment) and only two out of the 107 participants were severely disabled, the prevalence of severe disability in the sample was 1.9% (0.46 -7.32). Data collection on children with severe disability was discontinued (page 10) as we had reached the needed sample size to determine the severity of disability in these children.

5. They have stated in their discussion the other major limitation: the fact that it is likely that a high proportion of children; those with moderate or severe HIE are likely to have died. If the authors could focus on this as a study of outcome following HIE, reporting mortality and survival, with outcome to 10 years then this would be a very valuable article and would add significantly to the literature.
 ○ Plans to study the mortality and survival of NNJ and HIE are underway in future studies. However, in this study, our main research question in the current study was to understand the neurobehavioral patterns of survivors of NNJ and HIE.

6. Minor points:
 How did the WAZ and HAZ scores compare to the general population? Do they have this data?
 ○ We have addressed this issue as follows: The WAZ and HAZ scores of these children were compared to the WAZ and HAZ scores for children in the general population obtained in a study conducted in 2003 with 184 children aged 8 to 11 years (page 6). The mean WAZ was -1.3 (SD = 0.9), -1.0 (SD = 1.6), and -1.2(SD = 1.1) while the mean HAZ was -1.1 (SD = 1.1), -0.8 (SD = 1.5), and -1.3(SD = 1.1) for NNJ, HIE, and for the general population respectively. There were no significant differences in the WAZ [F (2, 196) = 0.5, P = 0.623] and HAZ [F (2, 285) = 2.6, P = 0.077] scores between the cases and the general population (Page 7).

7. The first paragraph of the discussion is repeated twice in the second paragraph.
 ○ We have revised this part and deleted the repetition as needed.

Reviewer 3: Bolajoko O Olusanya

1. The clinical profile of the participants as neonates is quite deficient and does not provide an objective basis for evaluating the risks of neurodevelopmental disorders. For example, the operational definitions of NNJ used in the study are rarely associated with neurodevelopmental disorders. NNJ is generally benign except in children with or at risk of
acute bilirubin encephalopathy (ABE). Since the authors acknowledged inconsistencies in clinical documentation of bilirubin levels at admission (and presumably on discharge also), it would have been useful to identify those who received phototherapy and/or exchange transfusion as proxies for identifying participants with severe NNJ. This is even more crucial in a developing country like Kenya where delays in receiving appropriate care are not uncommon (see Olusanya et al. (2014)).

- The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 µ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor et al., 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman et al., 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 µmol/l.

- We have amended the document to include the above information. Phototherapy was considered if there were any visible jaundice anywhere on the body on day one or TSB>260 µ/mols/l (WHO, 2013) (page 4).

2. The study suggests that the clinical diagnosis of HIE was based on Apgar scores. Please clarify and report the criteria for HIE.

- HIE diagnosis was not based on Apgar scores. We have amended this part and included the clinical signs of HIE that were used according to WHO guidelines. HIE diagnosis was given if the child had the following problems after birth: convulsions, inability to suck, apnoea, or poor motor tone (WHO, 2013) (See page 4).

3. It is unclear why the authors opted for auditory brainstem response (ABR) in these school-aged children rather than pure-tone audiometry which is a more accurate and common measure of auditory threshold, especially in resource-limited settings. The authors need to provide details of the type of ABR and the methodology employed for hearing screening in their population.

- We have added details on the type of audiometry machine and the methodology employed: The participants were screened for hearing and visual acuity using a pure-tone audiometry machine-Kamplex model R17A AUD Type 3 (Harlor & Bower, 2009) and the Snellen and E-Chart, respectively. For audiometric testing, first, we talked to the participants while walking towards the sound-proof assessment room to assess how well they are hearing. We then inspected their ear canals using an otoscope. We then instructed the participants to push the button when they hear a sound through the headphones and tested to see if the instructions were clear. We started at 1000 Hz and decreased the level by 10dB until no response was obtained. We then increased the level by 5 Db steps until a reply was captured again. We did these steps until the lowest level at which the participant responded was received. We continued with this procedure at 2000 Hz, 4000 Hz, 500 Hz, 250 Hz, and 125 HZ for both ears. Almost all the participants had
normal hearing and vision functioning except one who had mild vision problems (page 4-5).

References

Competing Interests: No competing interests
Bolajoko O Olusanya
Centre for Healthy Start Initiative (HSI-Centre), Lagos, Nigeria

This cross-sectional study set out to determine long-term neurodevelopmental disorders associated with survivors of neonatal jaundice (NNJ) and hypoxic-ischemic encephalopathy (HIE) at school age. The Gross Motor Function Classification System (GMFCS), Adapted Communication Profile, Raven's Coloured Progressive Matrices (RCPM) and an epilepsy screening tool were used to assess gross motor function, communication function, intellectual functioning, and epilepsy, respectively. The participants were also screened for hearing and visual acuity using an undisclosed auditory brainstem response instrument and the Snellen and E-Chart, respectively. The principal findings reported by the authors were that children who survived NNJ and HIE have normal vision, hearing, motor functioning, and communication functioning, but have poorer intellectual functioning compared to the normative sample.

Conceptually, this study was intended to fill a critical gap in available research evidence on the long-term sequelae of NNJ and HIE in sub-Saharan Africa. However, the validity of the study and the reported findings are compromised by the following major methodological drawbacks:

1. The clinical profile of the participants as neonates is quite deficient and does not provide an objective basis for evaluating the risks of neurodevelopmental disorders. For example, the operational definitions of NNJ used in the study are rarely associated with neurodevelopmental disorders. NNJ is generally benign except in children with or at risk of acute bilirubin encephalopathy (ABE). Since the authors acknowledged inconsistencies in clinical documentation of bilirubin levels at admission (and presumably on discharge also), it would have been useful to identify those who received phototherapy and/or exchange transfusion as proxies for identifying participants with severe NNJ. This is even more crucial in a developing country like Kenya where delays in receiving appropriate care are not uncommon (see Olusanya et al. (2014)1).

2. The study suggests that the clinical diagnosis of HIE was based on Apgar scores. Please clarify and report the criteria for HIE.

3. It is unclear why the authors opted for auditory brainstem response (ABR) in these school-aged children rather than pure-tone audiometry which is a more accurate and common measure of auditory threshold especially in resource-limited settings. The authors need to provide details of the type of ABR and the methodology employed for hearing screening in their population.

4. These limitations essentially foreclose any objective comparison of the reported findings in this study and those from the studies cited in the discussion section. Given the extensive and robust evidence on the long-term neurodevelopmental disorders frequently associated with survivors of NNJ and HIE in the literature, the authors may wish to represent their findings, more plausibly as evidence of a lack of significant neurodevelopmental disorders in children without any verifiable record of severe NNJ with or without ABE requiring phototherapy and/or exchange transfusion. Same for HIE.

References
1. Olusanya BO, Ogunlesi TA, Slusher TM: Why is kernicterus still a major cause of death and disability in low-income and middle-income countries?. Arch Dis Child. 2014; 99 (12): 1117-21
Author Response 27 Feb 2020

Dorcas Magai, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Response to Reviewer Comments

Reviewer 1: Tina Slusher

1. Notably, a serum bilirubin of 85 micromoles/litre would not be expected to cause any problems except perhaps for the extremely low-birth weight infants. Even 250 micromoles/litre would rarely be expected to cause motor or developmental problems. Furthermore, the complete absence of any children with deafness along with the lack of other markers of severe neonatal jaundice such as the need for exchange transfusion or even phototherapy make it unlikely that the population included in this study were at risk for neurodevelopmental delay from neonatal jaundice.
 - The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 µ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the
neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor, Denison, Beyai, & Owens, 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman, Stark, & Bhutan, 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 µmol/l.

We have amended the document to include the above information. *Phototherapy was considered if they had any visible jaundice anywhere on the body on day one or TSB> 260 µ/mols/l on day two (WHO, 2013)* (page 4).

- We have also included the median and interquartile range (IQR) of TSB values in this study as follows: *The median TSB values of the NNJ survivors was 245 (IQR = 144- 322) µ/mols/l (page 7).*

2. The only possible marker of acute bilirubin encephalopathy they recorded is death. While death certainly is a marker of severe neonatal jaundice, it can be the result of multiple other pathological processes. Unfortunately, the authors do not clarify whether the death was related to jaundice or not, leaving this uncertainty open to interpretation. It follows that the lack of markers for acute bilirubin encephalopathy confounds any possible relationship between the observed (or lack thereof) neurodevelopmental problems and hyperbilirubinemia. In fact, low levels of bilirubin (as reported in this study) have been postulated to be neuroprotective not harmful. The study would have been much more meaningful had the authors looked at children who had suffered from truly severe neonatal hyperbilirubinemia and/or acute bilirubin encephalopathy.

- We have addressed this issue in the discussion as follows: *Moreover, the information on attribution of neonatal insults to cause of death of children admitted to hospital in this setting is difficult due to lack of investigations. The children in this retrospective study were treated in a busy rural district hospital, and the signs for acute bilirubin toxicity were poorly recorded. The study provides evidence on the neurobehavioral patterns of children who have inadequate information at birth but are admitted to hospital and diagnosed with NNJ or HIE. Given that the challenges in medical records are very common in many settings in Low- and Middle-Income countries this question is important to answer as it addresses the day to day reality of the children in this context (page 9-10).*

3. Diagnosis of hypoxic ischemic encephalopathy by “clinical diagnosis” at discharge is also too non-specific to have any idea of the group of neonates being discussed.

- We have amended this part and included the clinical signs of HIE that were used according to the guidelines used by the clinicians for the final diagnosis. *HIE diagnosis was given if the child had the following problems after birth; convulsions, inability to suck, apnoea, or poor motor tone (WHO, 2013)* (See page 5)

4. The authors give no indication of the degree of hypoxic ischemic encephalopathy and thus, as with neonatal jaundice, the interpretation of a possible causal relationship with neurodevelopmental delay in school age children remains uninterpretable.

- We have addressed this issue in the discussion as follows: *During the period when the
participants of this study were born (2005 to 2012), most of the births occurred at home and local dispensaries. Therefore, most of the children were either referred to the hospital from the dispensaries or were brought to the hospital when the caregivers noted signs of sickness in their child. Thus, it was impossible to obtain Apgar scores (generally captured at the first 1, 5, and 10 minutes of life) or cord gases for most of the children. For this reason, we are unable to indicate the degree of HIE in this sample. Moreover, there are difficulties in obtaining the gestational age of the neonates (page 10).

5. In addition, the authors do not clarify the training of the clinicians making the diagnosis of HIE or how this diagnosis was validated, further complicating any possible meaningful interpretation of the observed results.

- We have amended and provided the required information about the training of the clinicians. A Medical officer with a bachelor's degree in medicine and surgery made the diagnosis of NNJ and HIE and this was often discussed with consultant pediatricians who had been trained in Kenya or the United Kingdom (page 4).

6. There is no comment regarding neonates who had both neonatal jaundice and hypoxic ischemic encephalopathy. Asphyxiated neonates would be expected to higher risk for acute bilirubin encephalopathy and long-term problems, but this group is not addressed by the authors.

Because of the flaws mentioned above, the study as currently presented does not add sustainably to our understanding of the true magnitude of neurodevelopmental problems from either neonatal jaundice or hypoxic-ischemic encephalopathy.

- We did not have these cases in this cohort. None of the participants in this study had a diagnosis of both NNJ and HIE as those with a combined diagnosis were excluded from this cohort study (page 4).

Reviewer 2: Deirdre Murray

1. The definition of hyperbilirubinaemia is very vague. They seem to have included all infants with a bilirubin level > 85. The authors do not give a time for this, beyond stating that the measurement took place in the first 28 days. The majority of infants have some level of jaundice, and will reach this level.

- The bilirubin was measured on admission, since many of the neonates were born at home, it was difficult to determine the exact age in hours. Moreover, the inclusion criteria included neonates up to 30 days of age as per the definition of neonatal period as used in other studies (Newman, Xiong, Gonzales, & Escobar, 2000). However, despite the inclusion criteria of 0-30 days, the median age of the participants at admission was 3 [interquartile range (IQR) = 0-8] days (page 6-7).

2. They state that they have done a sub analysis in the severe group, but do not tell us the numbers or the results in this group, who are actually the more interesting.

- We have provided the actual numbers of children with hyperbilirubinemia. A sub-analysis was conducted with 25 participants with severe hyperbilirubinemia on all outcomes, and similar results were obtained (page 6).

3. Surprisingly with this low level of hyperbilirubinaemia the outcomes are poor which makes me wonder whether these infants had other underlying diagnoses, such as sepsis, prematurity, IUGR?

- We have addressed this issue in the methods section as follows: Some of the participants had sepsis and preterm birth as a secondary diagnosis. For NNJ 23 had
neonatal sepsis, and 6 were preterm. In the HIE group, 5 had sepsis, and 2 were preterm. However, based on another study that we conducted, sepsis did not appear to aggravate the developmental outcomes of children with neonatal jaundice and sepsis (Magai et al., 2020) (page 5).

4. The follow up rate was low. They state that 347 survivors were identified and 121 were followed up. Please explain why the other 227 were not followed?
 ○ This explanation is given under limitations in the discussion section as follows: Given that this study was designed to screen out children with severe disability (they could not be able to carry out tasks during assessment) and only two out of the 107 participants were severely disabled, the prevalence of severe disability in the sample was 1.9% (0.46 -7.32). Data collection on children with severe disability was discontinued (page 10) as we had reached the needed sample size to determine the severity of disability in these children.

5. They have stated in their discussion the other major limitation: the fact that it is likely that a high proportion of children; those with moderate or severe HIE are likely to have died. If the authors could focus on this as a study of outcome following HIE, reporting mortality and survival, with outcome to 10 years then this would be a very valuable article and would add significantly to the literature.
 ○ Plans to study the mortality and survival of NNJ and HIE are underway in future studies. However, in this study, our main research question in the current study was to understand the neurobehavioral patterns of survivors of NNJ and HIE.

6. Minor points:
 How did the WAZ and HAZ scores compare to the general population? Do they have this data?
 ○ We have addressed this issue as follows: The WAZ and HAZ scores of these children were compared to the WAZ and HAZ scores for children in the general population obtained in a study conducted in 2003 with 184 children aged 8 to 11 years (page 6). The mean WAZ was -1.3 (SD = 0.9), -1.0 (SD = 1.6), and -1.2(SD = 1.1) while the mean HAZ was -1.1 (SD = 1.1), -0.8 (SD = 1.5), and -1.3(SD = 1.1) for NNJ, HIE, and for the general population respectively. There were no significant differences in the WAZ [F (2, 196) = 0.5, P = 0.623] and HAZ [F (2, 285) = 2.6, P = 0.077] scores between the cases and the general population (Page 7).

7. The first paragraph of the discussion is repeated twice in the second paragraph.
 ○ We have revised this part and deleted the repetition as needed.

Reviewer 3: Bolajoko O Olusanya

1. The clinical profile of the participants as neonates is quite deficient and does not provide an objective basis for evaluating the risks of neurodevelopmental disorders. For example, the operational definitions of NNJ used in the study are rarely associated with neurodevelopmental disorders. NNJ is generally benign except in children with or at risk of acute bilirubin encephalopathy (ABE). Since the authors acknowledged inconsistencies in clinical documentation of bilirubin levels at admission (and presumably on discharge also), it would have been useful to identify those who received phototherapy and/or exchange transfusion as proxies for identifying participants with severe NNJ. This is even more crucial in a developing country like Kenya where delays in receiving appropriate care are not
uncommon (see Olusanya et al. (2014)).

- The purpose of this study was to assess more subtle impairments, such as cognitive impairment and communication since this has not been studied in children surviving these insults in sub-Saharan Africa. Our inclusion of children with TSB>85 µ/mols/l is based on two facts: First, this is the level at which jaundice is reliably detected in the neonate. It is the definition used by the American Academy of Pediatrics for hyperbilirubinaemia, and other authors (Avery, 2005; Ho, 1992; Kramer, 1969; Porter & Dennis, 2002). Second, there are considerable difficulties in establishing gestational age (Rijken et al., 2011; Taylor et al., 2010) and time of birth and the severity of hypoxic-ischemic encephalopathy of neonates admitted to hospitals serving rural areas in sub-Saharan Africa, where most births occur at home. Moreover, there is considerable debate about the criteria for a safe level of bilirubin in sick neonates (Bhutani & Johnson, 2009; Smitherman et al., 2006; Varughese, 2019). This is one of the few studies to provide data that suggests that few problems develop in neonates who have bilirubin levels between 85 and 250 µmol/l.

- We have amended the document to include the above information. Phototherapy was considered if there were any visible jaundice anywhere on the body on day one or TSB>260 µ/mols/l (WHO, 2013) (page 4).

2. The study suggests that the clinical diagnosis of HIE was based on Apgar scores. Please clarify and report the criteria for HIE.

- HIE diagnosis was not based on Apgar scores. We have amended this part and included the clinical signs of HIE that were used according to WHO guidelines. HIE diagnosis was given if the child had the following problems after birth; convulsions, inability to suck, apnoea, or poor motor tone (WHO, 2013) (See page 4).

3. It is unclear why the authors opted for auditory brainstem response (ABR) in these school-aged children rather than pure-tone audiometry which is a more accurate and common measure of auditory threshold, especially in resource-limited settings. The authors need to provide details of the type of ABR and the methodology employed for hearing screening in their population.

- We have added details on the type of audiometry machine and the methodology employed: The participants were screened for hearing and visual acuity using a pure-tone audiometry machine-Kamplex model R17A AUD Type 3 (Harlor & Bower, 2009) and the Snellen and E-Chart, respectively. For audiometric testing, first, we talked to the participants while walking towards the sound-proof assessment room to assess how well they are hearing. We then inspected their ear canals using an otoscope. We then instructed the participants to push the button when they hear a sound through the headphones and tested to see if the instructions were clear. We started at 1000 Hz and decreased the level by 10dB until no response was obtained. We then increased the level by 5 Db steps until a reply was captured again. We did these steps until the lowest level at which the participant responded was received. We continued with this procedure at 2000 Hz, 4000 Hz, 500 Hz, 250 Hz, and 125 Hz for both ears. Almost all the participants had normal hearing and vision functioning except one who had mild vision problems (page 4-5).

References

Competing Interests: No competing interests