Seasonal upsurge of pneumococcal meningitis in the Central African Republic [version 1; peer review: 3 approved with reservations]

Thomas Crellen1,2, V. Bhargavi Rao3, Turid Piening4, Joke Zeydner2, M. Ruby Siddiqui1,3

1Department of Mathematical and Economic Modelling, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand
2Médecins Sans Frontières Operational Centre Amsterdam, Bangui, Boîte Postale 1793, Central African Republic
3Médecins Sans Frontières, London, EC4A 1AB, UK
4Médecins Sans Frontières, Berlin, 10179, Germany

Abstract
A high incidence of bacterial meningitis was observed in the Central African Republic (CAR) from December 2015 to May 2017 in three hospitals in the northwest of the country that are within the African meningitis belt. The majority of cases were caused by Streptococcus pneumoniae (249/328; 75.9%), which occurred disproportionately during the dry season (November-April) with a high case-fatality ratio of 41.6% (95% confidence interval [CI] 33.0, 50.8%). High rates of bacterial meningitis during the dry season in the meningitis belt are typically caused by Neisseria meningitidis (meningococcal meningitis), and our observations suggest that the risk of contracting S. pneumoniae (pneumococcal meningitis) is increased by the same environmental factors. Cases of meningococcal meningitis (67/328; 20.4%) observed over the same period were predominantly type W and had a lower case fatality rate of 9.6% (95% CI 3.6, 21.8%). Due to conflict and difficulties in accessing medical facilities, it is likely that the reported cases represented only a small proportion of the overall burden and that there is high underlying prevalence of S. pneumoniae carriage in the community. Nationwide vaccination campaigns in the CAR against meningitis have been limited to the use of MenAfriVac, which targets only meningococcal meningitis type A. We therefore highlight the need for expanded vaccine coverage to prevent additional causes of seasonal outbreaks.

Keywords
Central African Republic, pneumococcal meningitis, Streptococcus pneumoniae, Neisseria meningitidis, meningococcal meningitis, African meningitis belt
Corresponding author: Thomas Crellen (tomcrellen@gmail.com)

Author roles: Crellen T: Conceptualization, Data Curation, Formal Analysis, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Rao VB: Investigation, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Piening T: Resources, Supervision, Writing – Review & Editing; Zeydner J: Resources, Supervision; Siddiqui MR: Methodology, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This research was conducted as part of routine MSF surveillance, therefore data collection and the provision of medical care was funded by MSF. T.C. performed the analysis while an employee of the Mahidol Oxford Tropical Medicine Research Unit, funded by the Wellcome Trust (106698). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Crellen T et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Crellen T, Rao VB, Piening T et al. Seasonal upsurge of pneumococcal meningitis in the Central African Republic [version 1; peer review: 3 approved with reservations] Wellcome Open Research 2018, 3:134
https://doi.org/10.12688/wellcomeopenres.14868.1

First published: 19 Oct 2018, 3:134 https://doi.org/10.12688/wellcomeopenres.14868.1
Introduction
The northern districts of the Central African Republic (CAR) form part of the meningitis belt, a broad swathe of sub-Saharan Africa where the incidence of meningococcal meningitis typically peaks during the dry season¹. The CAR is among the world’s least developed nations and large areas of the country remain unstable following conflict between ethnic groups in 2013 and 2014. Consequently reliable medical data is scarce.

Here we report on findings from routinely collected data on meningitis patients in health facilities supported by the medical organisation Médecins Sans Frontières (MSF) in Bossangoa, Ouham Prefecture from 1st December 2015 to 31st May 2017, along with additional data from MSF supported hospitals in Batangafo, Ouham Prefecture and Paoua, Ouham-Pendé Prefecture within the same period. These towns are all located in the northwest of CAR close to the Chadian border and are separated by linear distances of 130-200km (see map, Figure 1).

Methods
Patients
Data were collected prospectively from three reporting hospitals (shown in Figure 1) from December 2015 to May 2017 as part of routine communicable disease surveillance. Our confirmed case criteria and clinical management of patients followed the guidelines from the World Health Organization². Our analysis included all confirmed cases with bacterial meningitis in the three hospitals over the observed periods. We excluded suspected cases, including cases where patients expired before laboratory diagnosis could be performed. Patient outcomes were recorded in Bossangoa and Batangafo along with socio-demographic characteristics (age, sex, residence) in all regions.

Laboratory Testing
Bacterial meningitis cases were confirmed by a latex agglutination test (Pastorex, Bio-Rad; cat. No. 61607) on cerebrospinal fluid (CSF), following the guidelines of the CAR Ministry of Health (MoH). The causative agent was confirmed by PCR of CSF samples at the Pasteur Institute in Bangui for around 5% of patients. PCR conditions were identical to those given by Corless et al.³.

Statistical analysis
Patient data were recorded using Microsoft Excel and statistical analysis was performed in R (version 3.5.1). Logistic regression and a chi-squared test for counts were performed. Statistical significance was defined as \(p < 0.05 \) or non-overlapping 95% confidence intervals.

Ethical Statement
Médecins Sans Frontières (MSF) is able to operate in countries such as the Central African Republic only with the support of national and local authorities and through continued dialogue with the beneficiary communities.

Figure 1. Map showing the location of the three reporting hospitals in the Central African Republic: Bossangoa, Batangafo and Paoua in relation to one another and to the capital Bangui. The country is shown divided by prefecture (highest administrative level). Bossangoa and Batangafo are located in Ouham prefecture and Paoua is located in Ouham-Pendé prefecture.
The high incidence of meningitis cases during this period was known to the communities and MSF gave health advice and provided medical services during the outbreak. Communities in the CAR were made aware that MSF collects data as part of its medical operations, including for research purposes. This research fulfilled the exemption criteria set by the MSF Ethical Review Board (ERB) for *a posteriori* analyses of routinely collected clinical data and thus did not require MSF ERB review. Data collected from patients was anonymized, though patient consent was not sought retrospectively. This study was conducted with permission from the Medical Director Sidney Wong (MSF-Operational Centre Amsterdam).

Results and discussion

Overview of cases

In Bossangoa Hospital, 139 cases of confirmed bacterial meningitis were reported over 18 months (Dec 2015 – end May 2017). The median case age was 16 years (Interquartile range [IQR] 7, 32) and 52.2% of patients were male. Unusually, the majority of confirmed cases were caused by *Streptococcus pneumoniae* (pneumococcal meningitis); 114/139 (82.0%), rather than *Neisseria meningitidis* (meningococcal meningitis) and this was also observed in the majority of confirmed meningitis cases in Paoua Hospital over 17 months (93/106, 87.7%) and Batangafo Hospital over 12 months (42/83, 50.6%), see Table 1 and Figure 2 for cases of pneumococcal meningitis by reporting Hospital. Across all sites, the majority of confirmed cases of bacterial meningitis were caused by *S. pneumoniae* (249/328; 75.9%) followed by *N. meningitidis* (67/328; 20.4%) and *Haemophilus influenzae* (12/328; 3.7%); see Figure 3 for cases by causative agent over time. The temporal distribution of cases was non-random, with the majority occurring in the dry season of November-April. Of all cases of bacterial meningitis, 175/221 (79.2%) were in the dry season months in 2016, and 128/161 (79.5%) of pneumococcal meningitis cases (Figure 2 and Figure 3). A chi-squared (χ^2) test for count data showed the difference between the number of cases in dry and wet season months to differ significantly for all cases of bacterial meningitis by any causative agent ($\chi^2 = 75, p = \text{2.2}\times10^{-16}$, degrees of freedom [df] = 1), and for cases of pneumococcal meningitis ($\chi^2 = 56, p = 7.0\times10^{-14}$, df = 1). Species confirmation by PCR was consistent with the latex agglutination test for the subset of confirmed cases.

A heightened incidence of bacterial meningitis during the dry season in the African meningitis belt is typically associated with *Neisseria meningitidis*, though occasional seasonal outbreaks of *S. pneumoniae* have been observed in the meningitis belt, for instance in Ghana and Burkina Faso. The mechanism for the increase in cases of bacterial meningitis has been postulated to be a result of damage to host mucosal defenses by the extreme environmental conditions of the dry season in this region, resulting in an increased rate of conversion from asymptomatic carriage to invasive disease.

Patient outcomes

Medical staff in MSF-supported facilities reported that patients typically presented with advanced symptoms (Glasgow Coma Scale 1–4) and that they had often sought the advice of traditional healers beforehand, though data on clinical symptoms and previous treatment at admission were not systematically recorded. Patient outcomes were recorded in Bossangoa and Batangafo (Table 1); case fatality ratio (CFR) estimates were high for patients with *S. pneumoniae* in Bossangoa, 46.6% (95% confidence interval [CI] 36.0%, 57.5%) and Batangafo, 29.7% (95% CI 16.4%, 47.2%), though these values are within the range of CFR estimates for pneumococcal meningitis from other African countries in the meningitis belt (36-66%). In Bossangoa and Batangafo the median age of pneumococcal meningitis patients was 6 years (IQR 6, 27) and 53.8% were male. In a logistic regression model where the outcome variable was death or survival, children (<16 years) admitted with meningococcal meningitis were more likely to die (odds ratio $= 1.6$, 95% CI 1.0, 2.6).

Table 1. Summary of the patients diagnosed as positive for bacterial meningitis from three hospitals in the northwest Central African Republic. The number of patients with reported sex and case fatality ratios may be lower than the total numbers due to missing data. IQR, interquartile range; CFR, case fatality ratios; CI, confidence interval; pneumococcal, pneumococcal meningitis; meningococcal, meningococcal meningitis.

<table>
<thead>
<tr>
<th>Prefecture</th>
<th>Bossangoa Hospital</th>
<th>Batangafo Hospital</th>
<th>Paoua Hospital</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Confirmed Cases (Confirmed Pneumococcal Cases)</td>
<td>139 (114, 82.0%)</td>
<td>83 (42, 50.6%)</td>
<td>106 (93; 87.7%)</td>
<td>328 (249; 75.9%)</td>
</tr>
<tr>
<td>Median Age of Confirmed Cases (IQR)</td>
<td>16 years (7, 32)</td>
<td>10 years (5, 20)</td>
<td>7 years (1, 13)</td>
<td>11 years (4, 25)</td>
</tr>
<tr>
<td>Male Confirmed Cases (%)</td>
<td>72/138 (52.2%)</td>
<td>46/83 (55.4%)</td>
<td>57/105 (54.3%)</td>
<td>175/326 (53.7%)</td>
</tr>
<tr>
<td>Pneumococcal CFR (95% CI)</td>
<td>41/88 (46.6%) (36.0, 57.5%)</td>
<td>11/37 (29.7%) (16.4, 47.2%)</td>
<td>Data Unavailable</td>
<td>52/125 (41.6%) (33.0, 50.8%)</td>
</tr>
<tr>
<td>Meningococcal CFR (95% CI)</td>
<td>1/15 (6.7%) (0.3, 40.0%)</td>
<td>4/37 (10.8%) (3.5, 40.0%)</td>
<td>Data Unavailable</td>
<td>5/82 (6.6%) (3.6, 21.8%)</td>
</tr>
</tbody>
</table>
Figure 2. Cases of confirmed pneumococcal meningitis from three hospitals in the Central African Republic from 1st December 2015 to 31st May 2017. The plot shows a histogram where cases are collected into bins of one month. Cases are more numerous during the dry season (November to April), suggesting a seasonal trend. The dashed line A denotes the start of the reporting period for the health facilities in Batangafo and Paoua and B denotes the end of the reporting period for Batangafo. Bins are coloured by hospital.

Figure 3. Cases of confirmed bacterial meningitis from three hospitals in the Central African Republic from 1st December 2015 to 31st May 2017. The plot shows a histogram where cases are collected into bins of one month. Cases are more numerous during the dry season (November to April), suggesting a seasonal trend. The dashed line A denotes the start of the reporting period for the health facilities in Batangafo and Paoua and B denotes the end of the reporting period for Batangafo. Bins are coloured by causative agent (Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae).
pneumococcal meningitis were found to have a lower CFR (24.6% [95% CI 12.7%, 39.7%], odds ratio [OR] = 0.33, \(p = 0.0035 \)) compared to adults, (CFR 49.2% [95% CI 33.9%, 64.6%]). A higher CFR was also found in adults with pneumococcal meningitis in Burkina Faso from 2002–05\(^2\), though age did not predict mortality in Northern Nigeria from 1971–76\(^6\). This may reflect statistical control for clinical severity in 8, and the variation in mortality we observe may be confounded by differences in healthcare-seeking behaviour between children and adults, whereby adults present later to healthcare facilities when their symptoms are more advanced\(^9\). The effect of sex on the odds of mortality was not significant (OR for males = 1.39, \(p = 0.39 \)). Vaccinations against pneumococcal meningitis have been given routinely to infants in MSF supported health facilities since 2012, and in addition MSF conducted a multi-antigen vaccination catch up campaign in the Paoua sub-prefecture for children less than 5 years from 2015 to mid-2016. This included two rounds of vaccination with pneumococcal conjugate vaccine (PCV13), which is effective against thirteen serotypes of \textit{S. pneumoniae}. In the first round 70% of the population were targeted with 95% coverage. However, vaccine coverage in the wider community is unknown and the security context has precluded regional vaccination campaigns.

\textbf{Incidence rates}\\

The World Health Organization lacks a formal definition for outbreaks of pneumococcal meningitis\(^10\); however, the ‘alert threshold’ is defined by the CAR MoH as 3 cases per 100,000 per week and ‘epidemic threshold’ as 10 cases per 100,000 per week. Bossangoa reported 11 cases of pneumococcal meningitis in the 9th epidemiological week of 2017; given an estimated target population of 350,000 this meets the alert threshold (3.1 cases per 100,000 per week; population estimate based on 2003 census). Reliable estimates of the underlying population, however, are lacking which makes it challenging to calculate per-capita incidence rates; it has been estimated that one-fifth of the population of the CAR has been displaced internally or in neighbouring countries following civil conflict in 2014\(^11\). Therefore our estimates of the per-capita incidence should be treated cautiously as they likely underestimate the true rate.

Further uncertainty surrounds the proportion of true cases that report to our medical facilities given the ongoing instability and the difficulties faced by patients from remote rural areas in accessing care. In February 2016 MSF medical staff made an exploratory visit to the community of Kouki in Ouham Prefecture (population 600) as a response to a rise in pneumococcal cases in Bossangoa Hospital. Community health workers reported 17 deaths with symptoms suggestive of bacterial meningitis over the previous 2 months. None of these fatal cases had reported to a healthcare facility, raising the possibility that the cases we observed represent only the ‘tip of the iceberg’ during the seasonal peak. Given the relatively low attack rate of \textit{S. pneumoniae}, whereby bacteria in carriage become invasive and cause disease, it is likely that there is high underlying prevalence of \textit{S. pneumoniae} carriage in the community\(^12\). As we were unable to serotype \textit{S. pneumoniae} isolates, and as there is limited information on attack rates for \textit{S. pneumoniae} in the African meningitis belt, we lack sufficient information to estimate the underlying rate of carriage in this region.

\textbf{Meningococcal meningitis}\\

Amongst the cases of meningococcal meningitis (67, 19.5% of total confirmed cases) the CFR estimates were significantly lower in both Bossangoa, 6.67% (95% CI 0.3, 40.0%) and Batangafo, 10.8% (95% CI 3.5, 40.0%) than those reported for pneumococcal meningitis (see Table 1). The median age of patients with meningococcal meningitis was 7 years (IQR 3, 19) and 56.1% of patients were male. Nearly all cases were sub-typed as Y/ W (96.9%) with the latex agglutination test, and a subset of these were confirmed as type W by PCR at the Institute Pasteur in Bangui. This is most likely to be the strain of \textit{N. meningitidis} as W is known to be present in Africa whereas strain Y is confined to North America\(^3\). Furthermore recent work has shown that between 2015 and 2016 100% (66/66) of meningococcal samples isolated from patients nationwide in the CAR were of type W and that the majority of subtyped isolates belonged to the ST11 complex\(^4\).

A recent nationwide vaccination campaign by the CAR MoH commencing in 2016 used MenAfriVac, which is only active against meningococcal meningitis type A. While type W is considered less infectious than type A, outbreaks with W have been reported from the meningitis belt, for instance in Burkina Faso in 2002\(^5\), therefore multivalent vaccines should be considered to prevent future outbreaks.

\textbf{Conclusions}\\

In conclusion it appears that the northern region of the Central African Republic experienced an outbreak of pneumococcal meningitis over the observed period, with a similar seasonal pattern to meningococcal meningitis. A comprehensive follow-up of cases in the community was not possible due to security constraints. Despite a MenAfriVac campaign conducted in 2017 meningococcal meningitis is still present although with predominantly non-A strains circulating, namely W. Our analysis is limited by incomplete PCR confirmation and a lack of serotyping for \textit{S. pneumoniae}, however our findings suggest that increasing PCV13 coverage in routine vaccination programmes would be beneficial in preventing future seasonal outbreaks of pneumococcal meningitis.

\textbf{Data availability}\\

Raw, de-identified data taken from the present study are available on figshare, DOI: https://doi.org/10.6084/m9.figshare.7210367\(^6\).

Data are available under the terms of the https://creativecommons.org/licenses/by/4.0/ (CC-BY 4.0).

\textbf{Grant information}\\

This research was conducted as part of routine MSF surveillance, therefore data collection and the provision of medical care was

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.

\(\textit{S. pneumoniae} \) is a common cause of bacterial meningitis, with \(\textit{N. meningitidis} \) being a major cause of meningococcal meningitis. PCV13 is a pneumococcal conjugate vaccine that was introduced in 2016 in the CAR.

\(\textit{N. meningitidis} \) is a Gram-negative diplococcus that causes meningococcal meningitis. Meningococcal meningitis is a severe and potentially deadly disease, particularly in children. PCV13 is effective against thirteen serotypes of \textit{S. pneumoniae}, which is effective against \textit{N. meningitidis}.
funded by MSF. T.C. performed the analysis while an employee of the Mahidol Oxford Tropical Medicine Research Unit, funded by the Wellcome Trust (106698).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We would like to thank MSF operational centres Paris and Barcelona for sharing data from projects, in particular the CAR medical coordinators Yves Crispin Asuni Izia-Mpsey and José Sanchez. We also acknowledge Institute Pasteur Bangui for their assistance in diagnostics and confirmation of meningitis cases by PCR. We are grateful to the CAR Ministère de la Santé for their continued support of MSF operations. We also thank Anastasia Hernández-Koutoucheva for her comments on an earlier draft. Finally we thank the dedicated MSF field staff in Bossangoa, Paoua and Batangafo, in particular the laboratory and clinical teams. We highlight Bossangoa clinician Jonathan Drew, laboratory manager Francois Bero Loban and flying laboratory technician Ghislain Koliatene Serge for their contribution to this work.

References

Open Peer Review

Current Peer Review Status: ?? ?

Version 1

Reviewer Report 11 February 2019

https://doi.org/10.21956/wellcomeopenres.16204.r34726

© 2019 Manirakiza A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alexandre Manirakiza
Epidemiological Service, Pasteur Institute of Bangui, Bangui, Central African Republic

This article reports very important information for understanding the epidemiology of meningitis in the Central African Republic.

However, some additional information can be brought to the article for the reader.

1. Introduction: The introduction could be more informative about the context of this work if the authors add some bibliographical references, such as the existing and published data on bacterial meningitis in the Central African Republic1-3.

2. Methods/Patients: How many patients were excluded? Why were suspected cases excluded? These cases were excluded because they had a negative result or because cerebrospinal fluid analysis could not be performed? Details about this, should be provided at the beginning of the Result section.

3. Statistical analysis: Authors stated that “Patient data were recorded using Microsoft Excel”. They should provide these data in their Excel format. Visibly, this is not the case at this link: https://dx.doi.org/10.6084/m9.figshare.7210367.

4. Results/Discussion: It seems to me more interesting to separate these two parts.

5. Conclusion: The limitations of this study (“A comprehensive follow-up of cases in the community..... Our analysis is limited by incomplete PCR confirmation and a lack of serotyping......”could be moved at the end of the discussion.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 20 Mar 2019
Tom C, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand

We thank Dr. Manirakiza for his helpful comments.

To address the specific issues he raises:

1. Introduction: We have expanded the introduction and the discussion/ conclusion to place the current study in a broader context, including incorporating the recommended references.

2. Methods/Patients: Data on patients that tested negative and suspected cases were collected only in Paoua Hospital. We have added a paragraph describing the suspected and negative cases in the methods section. We are aware of this limitation in our data from Batangafo and Bossangoa and encourage more thorough reporting of suspected and
negative cases in the future.

3. Statistical analysis: The data we provide at https://dx.doi.org/10.6084/m9.figshare.7210367 is a .txt file which is readable by Excel. It can be imported by (File -> Import -> Text file).

4. Results/Discussion: We have added a discussion section where we discuss the study in a broader context. We retain some discussion elements in results sections as we feel that this contributes better to reader flow and prevents the discussion / conclusion section from being overly repetitive.

5. Conclusion: We have added a discussion section as mentioned above.

In addition to these points we have added information regarding serotyping of pneumococcus and added details of other outbreaks of pneumococcal meningitis that occurred at a similar time.

Overall we consider the quality and usefulness of our article to be substantially improved in light of the comments by Dr. Manirakiza and the other reviewers.

Competing Interests: None

Reviewer Report 31 January 2019

https://doi.org/10.21956/wellcomeopenres.16204.r34638

© 2019 Broutin H. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hélène Broutin
1 Department of Parasitology, Faculty of Medicine, Cheikh Anta Diop University (UCAD), Dakar, Senegal
2 MIVEGEC, UMR CNRS, IRD, University of Montpellier, Montpellier, France

This study represents an important contribution to understand the current epidemiology situation of bacterial meningitis in the African Belt in the context of One serogroup targeted vaccine. Pneumococcal meningitis continues to kill people and this contribution could help in designing potential new vaccination strategies for meningitis control.

The limit of this study consists in the lack of information about the serotypes of Streptococcus pneumonia. Indeed, authors conclude from their results that PCV vaccines can help to control pneumo meningitis control but they did not provide serotypes information for cases in comparison to serotypes included in PCV vaccine. The study deserves to be published without this information about serotypes but authors should discuss this lack of serotype information as a
limitation and explain that it should be a next step of the study to be able to inform the potential role of PCV vaccination in the meningitis control.

The paper is simply and clearly written. Introduction could be more developed to provide readers with a brief overview of what is known about pneumo meningitis in the African belt. The point is that this information is lacking so far and that makes this study highly relevant and informative.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Ecology of infectious diseases, Meningitis ecology and dynamics, Epidemiology,

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 20 Mar 2019

Tom C, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand

We thank Dr Broutin for her helpful remarks.

We have added details on serotyping. Six pneumococcal CSF isolates have been typed as serotype 1 by PCR. While this represents a small proportion of the total isolates, it confirms previous research in the Central African Republic that found serotype 1 to be the dominant strain in *S. pneumoniae* meningitis cases in Bangui. An outbreak that occurred contemporaneously in Ghana in 2015/6 was also predominantly pneumococcus serotype 1. This suggests that PCV10/13 would be effective against the outbreak strains of *S. pneumoniae* in CAR.
We have also expanded the introduction and discussion to place the CAR outbreak in a broader context and included more references.

Overall we consider the article to be substantially improved and more informative after the comments from Dr Broutin and other reviewers.

Competing Interests: None
this comment on carriage adds much. It is more important to highlight the information on disease burden outside of the reporting hospitals.
- Did you refer to the 2014 WHO epidemic meningitis guidelines?

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
Tom C, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand

In response to the helpful comments by Prof. Trotter we have included information on suspected and negative cases (this was possible in only one of the reporting hospitals), and we have expanded the introduction and discussion section to place the outbreak in CAR into a broader context. We include all of the suggested references. We discuss the contemporaneous outbreak of pneumococcal meningitis in Ghana in the discussion. We also include brief information on serotype (six pneumococcus isolates were typed by PCR as serotype 1). Overall we consider the quality and usefulness of the article has improved substantially as a result of the comments by Prof Trotter and the other reviewers.

Competing Interests: None