SOFTWARE TOOL ARTICLE

An interactive application for malaria elimination transmission and costing in the Asia-Pacific [version 1; peer review: awaiting peer review]

Olivier J. Celhay, Sheetal Prakash Silal, Richard James Maude, Chris Erwin Gran Mercado, Rima Shretta, Lisa Jane White

1Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2Modelling and Simulation Hub, Africa (MASHA), Department of Statistical Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
3Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
4South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch University, Cape Town, South Africa
5Harvard TH Chan School of Public Health, Harvard University, Boston, USA
6Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
7Global Health Group, University of California, San Francisco, 550 16th St, 3rd Floor, Box 1224, San Francisco, CA, 94158, USA
8Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
9University of Basel, Petersplatz 1, 4001 Basel, Switzerland

Abstract

Leaders in the Asia-Pacific have endorsed an ambitious target to eliminate malaria in the region by 2030. The emergence and spread of artemisinin drug resistance in the Greater Mekong Subregion makes elimination urgent and strategic for the goal of malaria eradication. Mathematical modelling is a useful tool for assessing and comparing different elimination strategies and scenarios to inform policymakers. Mathematical models are especially relevant in this context because of the wide heterogeneity of regional, country and local settings, which means that different strategies are needed to eliminate malaria. However, models and their predictions can be seen as highly technical, limiting their use for decision making. Simplified applications of models are needed to allow policymakers to benefit from these valuable tools. This paper describes a method for communicating complex model results with a user-friendly and intuitive framework. Using open-source technologies, we designed and developed an interactive application to disseminate the modelling results for malaria elimination. The design was iteratively improved while the application was being piloted and extensively tested by a diverse range of researchers and decision makers. This application allows several target audiences to explore, navigate and visualise complex datasets and models generated in the context of malaria elimination. It allows widespread access, use of and interpretation of models, generated at great effort and expense as well as enabling them to remain relevant for a longer period of time. It has long been acknowledged that scientific results need to be repackaged for larger audiences. We demonstrate that modellers can include applications as part of the dissemination strategy of their findings. We highlight that there is a need for additional research in order
to provide guidelines and direction for designing and developing effective applications for disseminating models.

Keywords
Model-based Decision Support System, Interactive application, Malaria, Elimination, Modeling, Modelling, Asia-Pacific, GMS

This article is included in the Mahidol Oxford Tropical Medicine Research Unit (MORU) gateway.

Corresponding author: Olivier J. Celhay (olivier.celhay@gmail.com)

Author roles: Celhay OJ: Project Administration, Software, Visualization, Writing – Original Draft Preparation; Silal SP: Formal Analysis, Methodology, Writing – Review & Editing; Maude RJ: Data Curation, Investigation, Project Administration, Writing – Review & Editing; Gran Mercado CE: Data Curation, Investigation, Writing – Review & Editing; Shretta R: Conceptualization, Formal Analysis, Methodology, Writing – Review & Editing; White LJ: Conceptualization, Formal Analysis, Methodology, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust Major Overseas Programme in SE Asia (106698). OJC was supported by the Bill and Melinda Gates Foundation (OPP1110500). SS was funded by a grant from the Asian Development Bank and the Bill and Melinda Gates Foundation (BMGF) (OPP1089413). RJM and CEM were funded by the Bill and Melinda Gates Foundation (OPP1110500), Asian Development Bank (TA-8763 and TA-8656), Australian Department of Foreign Affairs and Trade (71215) and the Wellcome Trust Major Overseas Programme in SE Asia (106698/Z/14/Z). RS was funded by a grant from the Asian Development Bank and the Bill and Melinda Gates Foundation (OPP1089413). LJW was supported by the Bill and Melinda Gates Foundation (OPP1110500) and the Wellcome Trust Major Overseas Programme in SE Asia (106698). The authors were not paid to write this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Celhay OJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Celhay OJ, Silal SP, Maude RJ et al. An interactive application for malaria elimination transmission and costing in the Asia-Pacific [version 1; peer review: awaiting peer review] Wellcome Open Research 2019, 4:61 (https://doi.org/10.12688/wellcomeopenres.14770.1)

First published: 01 Apr 2019, 4:61 (https://doi.org/10.12688/wellcomeopenres.14770.1)
Abbreviations

APLMA, Asia Pacific Leaders Malaria Alliance
DSS, Decision Support System
GMS, Greater Mekong Subregion (Cambodia, Yunnan Province in China, Lao People’s Democratic Republic, Myanmar, Thailand and Viet Nam)
METCAP, Malaria Elimination Transmission and Costing in the Asia-Pacific
NMCP, National Malaria Control Programme
Pf, Plasmodium falciparum
Pv, Plasmodium vivax
WHO, World Health Organisation

Introduction

Malaria cases and deaths in the Asia-Pacific have declined dramatically in recent decades. However, there is a marked rise in the occurrence of artemisinin resistance across the Greater Mekong Subregion (GMS), which threatens to reverse the gains made. As a response, leaders in the Asia Pacific region at the highest levels have endorsed a regional goal of making the Asia-Pacific malaria-free by 2030 and many countries across the region are now working towards national elimination of malaria. Malaria Elimination Transmission and Costing in the Asia-Pacific (METCAP) is a cross-disciplinary project aimed at evaluating and comparing potential malaria control and elimination strategies for 22 countries in the Asia-Pacific region: Afghanistan, Bangladesh, Bhutan, Cambodia, DPR Korea, India, Indonesia, Lao PDR, Malaysia, Myanmar, Nepal, Pakistan, Papua New Guinea, People’s Republic of China, Philippines, Republic of Korea, Solomon Islands, Sri Lanka, Thailand, Timor-Leste, Vanuatu, Viet Nam. At the core of METCAP is a dynamic epidemiological-economic multi-patch model of the transmission and costing of malaria that project malaria incidence until 2030 across several scenarios (i.e. using several packages of interventions for the elimination of malaria).

The METCAP model is the first mixed *Plasmodium falciparum* (Pf)/*Plasmodium vivax* (Pv) mathematical model. The METCAP model was built in three stages. First, country-specific information were obtained from several sources, including WHO’s annual World Malaria Reports (2008; 2010–2015), published literature on glucose-6-phosphate dehydrogenase deficiency (G6PDd) prevalence and the Earth System Research Laboratory website for El Niño Southern Oscillation time series. This data was used to build ranges of plausible estimates of several malaria-related indicators, including annual disease burden estimates. The second stage consisted of modelling several indicators (such as the estimated incidence of all malaria species and reported fatalities) for each country between 2016 and 2030, under scenario-specific assumptions. A total of 80 scenarios were built based on 10 different sets of packages of interventions. These ranged from discontinuing most malaria control activities to a very substantial scale-up of interventions, which could be supplemented by mass drug administration (MDA) or an increase in insecticide-treated net coverage, meanwhile assuming different trajectories of drug resistance (increasing or stable). The third and final stage was a full costing of each scenario that was done evaluating the costs of interventions per country, year and component. This multi-patch model was developed in R language with calls to C++ routines to find numeric solutions to the model’s ordinary differential equations (ODE).

The applicability of models for decision-making has been questioned by policymakers: with reactions ranging from them believing them completely or mistrusting them completely. Clearly the right place is between the two. Communicating the results of models effectively so as to eliminate biases and allow policymakers themselves to arrive at wise judgements is a difficult goal to attain. Policymakers, especially in developing countries, often report difficulties with the format and style in which research outputs are presented, stating that research reports are often written in an academic style using technical language and include complex statistics that are difficult to understand. On the other hand, researchers may feel that oversimplifying research findings will omit relevant details needed to fully understand the research problem. Researchers may also be concerned about the academic rigor of their work requiring details of research methodology and the use of technical terminology. Decision support systems (DSS) are computer-based information systems that support decision-making activities by giving access to information organised to inform judgments and preferences about a range of intervention options and their trade-offs. Several DSS of different design have been developed and used for malaria control strategies. The objectives driving the development of these DSS include supporting the diagnosis of malaria, targeting activities for malaria elimination in Bhutan, providing access to global maps of malaria transmission and offering a mathematical modelling platform for population level models of malaria elimination.

For clarity, hereafter we will refer to DSSs or interactive application as “apps”, and use “App” with a capital letter when referring to the METCAP application.

Methods

Development background

The METCAP project is a multi-disciplinary collaboration with a team comprised of data scientists, modellers, epidemiologists, health economists and other experts. Inputs from this diverse team were instrumental in designing an App to specifically account for the different capacities, preoccupations, perceptions, and needs of its intended users, as well as the characteristics of the institutions in which they are working.

For the diverse targeted audience, different capabilities and needs of users were taken into account and several design strategies meant to mitigate hindering factors were developed. The main challenge in developing such an app revolves around finding a good balance in the information load, so that the user can access information quickly and conveniently without being overwhelmed. During the App building process, we discussed the target audience for the App, and considered potential trade-offs...
Table 1. Potential limiting factors for app use and resolution strategies.

<table>
<thead>
<tr>
<th>Factors determining the App understanding and use</th>
<th>Details</th>
<th>Strategies for addressing factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer literacy and ease of navigating web interface</td>
<td>User cannot navigate efficiently through the App and becomes discouraged. The seniority of policymakers makes them less likely to be part of a generation that has grown up with the computers/internet.</td>
<td>Use conventional navigation elements that are classic and well-known to most users. Use general lessons for web design. Make the App openly accessible through a web interface with a URL that can be shared.</td>
</tr>
<tr>
<td>Poor internet connectivity</td>
<td>User has poor or no internet connection, which precludes them from using the software online.</td>
<td>Inform users that authors are available to provide support to install an offline version.</td>
</tr>
<tr>
<td>English language literacy</td>
<td>App is used in Asia-Pacific where English is, in most countries, a secondary language</td>
<td>Limit the amount of text in the App.</td>
</tr>
<tr>
<td>Technical knowledge of malaria</td>
<td>Too frequent use of technical terms will force the user to do outside research and possibly lead to their discouragement.</td>
<td>Provide a glossary of malaria related terms, and as many reminders of the acronyms as possible. Provided contextual directions directly in the App and links to more detailed information.</td>
</tr>
<tr>
<td>Technical knowledge of modelling</td>
<td>The user thinks that use of the App is restricted to people with good knowledge of modelling.</td>
<td>Insert videos to introduce users to mathematical modelling. Provide information on the specific model being developed: overview of methodology, uncertainty associated with the model, etc. Show all steps between data sources, data estimates, model building and calibration.</td>
</tr>
<tr>
<td>Attitude/perception/curiosity towards modelling</td>
<td>Modelling is perceived as too abstract and remote from the ground realities. There is no real perception of the advantages of using modelling.</td>
<td>Insert videos to introduce users to modelling. Make the experience like a conversation by allowing users to use their knowledge (choosing scenarios that make sense from an operational viewpoint). Encourage users to spend more time on the App by making the App engaging (interactive map, choice of colours etc.).</td>
</tr>
<tr>
<td>Time constraints</td>
<td>Policymakers’ time is limited with competing priorities.</td>
<td>The App navigation should be intuitive and not require excessive reading or consulting a user manual.</td>
</tr>
</tbody>
</table>
between simplifying the presentation of results and providing enough relevant background on the model and methods. At the core of this discussion was the task of identifying which important features are most difficult to communicate to policy-makers. After a prototype was developed, several presentations of the App were made to external audiences during informal meetings including Asian Development Bank, World Health Organisation, Global Fund, APLMA and National Malaria Control Programmes.

App design
Guiding principles found in reference books on web design were particularly relevant to the design of the App20. When making choices regarding the user interface (UI), the usability of the tool remained the first priority and design decisions were made based on natural, straightforward motivations of accessibility. For example, due to the significant computation time required to run the model, the only practical option was to run models beforehand, save the data locally and then display these already available results. While testing prototypes of the App and trying to adopt the viewpoint of the end user, potential issues in the interpretation of results began to emerge. Several modelling scenarios were changed accordingly, leading to alterations in the App.

Target audience's relevant interests
The target audience for the App is comprised of decision makers at international, regional and national levels with an interest in the control or elimination of malaria in one area or across the whole Asia-Pacific region. This broad target audience can be disaggregated into several more specific groups according to their technical background and previous exposure to the subject of modelling and their main interests relevant to the METCAP project. We define four broad categories of users and summarise what we project as their main interests in the App in Table 2. (One clear limitation of this method is that the heterogeneity within a category can be very significant.)

Before and during the development of a prototype of the App, the development team defined and reframed its objectives and strategies for reaching this audience. We identified four main objectives:

1. Engage with a diverse target audience and provide them with an accessible, engaging, not misguiding and technically sound presentation of the METCAP model results and underlying data. This presentation should match the audience’s interests and provide enough contextual information to allow them to form a sound, balanced judgment of the data provided.

2. Display a large amount of information in a cohesive way through an intuitive interface that maximises accessibility for a variety of audiences. At the same time, provide contextual information on the underlying data (source, quality, uncertainty, etc.) and the methods.

3. Provide information on the mathematical model used along with a more general presentation on the topic of modelling and compartmental models. Make explicit the assumptions made and the limitations of the work by displaying the sequence that led to developing the model and by highlighting the potential limitations of the model.

4. Allow user to delve into specific contexts according to their interests, such as a specific country or group of countries, a specific set of scenarios or specific indicators. For example, the potential impact on Pf incidence of mass drug administration in the GMS.

Implementation
The model was run using R Statistical Software10, with calls to scripts in the C++ language and the results were stored and saved in R objects. We used R Statistical Software and extended it with the R Shiny package v1.1.021, an extension that is a “web

<table>
<thead>
<tr>
<th>Target audience</th>
<th>Anticipated main interests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donors and high-level policymakers</td>
<td>• Optimal long-term strategy for malaria elimination.</td>
</tr>
<tr>
<td></td>
<td>• Limitations and uncertainty associated with the model.</td>
</tr>
<tr>
<td></td>
<td>• Associated costs for the “minimal elimination scenario”.</td>
</tr>
<tr>
<td>Senior staff from National Malaria Control Programs (NMCPs) of the 22 countries</td>
<td>• Feasibility of malaria elimination for a specific country.</td>
</tr>
<tr>
<td></td>
<td>• Optimal scenarios for elimination in a specific country with respect to country strategy (e.g. acceptability of mass drug administration).</td>
</tr>
<tr>
<td></td>
<td>• Global costs for each scenario.</td>
</tr>
<tr>
<td>Technical health agencies (e.g. World Health Organisation) staff</td>
<td>• Quality of underlying surveillance data.</td>
</tr>
<tr>
<td></td>
<td>• Indicators chosen and their relation to elimination.</td>
</tr>
<tr>
<td></td>
<td>• Strategies for drug resistance containment.</td>
</tr>
<tr>
<td>Modellers and other researchers</td>
<td>• Underlying data and assumptions made to build the model.</td>
</tr>
<tr>
<td></td>
<td>• Modelling methods used.</td>
</tr>
<tr>
<td></td>
<td>• Model results.</td>
</tr>
</tbody>
</table>
application framework” combining R as a backend server and a classic HTML User Interface. Shiny allows for customisation of the App’s UI to provide an elegant environment for displaying user input controls and simulation output, where the latter simultaneously updates with changing input. Several solutions for developing interactive apps exist but we decided on Shiny for its convenience. Shiny is an open-source, free, package of R—the same language ecosystem that was used in the modelling section.

Operation
The App can be publicly accessed at http://www.metcapmodel.net with a recent version of a modern browser (e.g. Firefox, Google Chrome, Safari, Internet Explorer). The App is most responsive when accessed from an internet connection with a download speed of at least 1 megabit per second (Mbps).

Use cases
The App UI is built using a standard framework with a header, navigation sidebar and main body (Figure 1). The UI has several user inputs and some of them are conditional on others. Several outputs are displayed based on the user choices recorded through the inputs. At some locations in the App, contextual information appears upon hovering over an element (e.g. name of a country in the map, value of a parameter in a user input element).

The App contains five main sections, as shown in panel 1 of Figure 1. The section “What is METCAP?” provides contextual information on modelling and the METCAP project with text and videos. “Baseline Data: Data Collation” shows an interactive map and time-series graph of the values of indicators used to build the model. The section “Model Stage 1: Build estimates” shows the health seeking estimates, estimated clinical burden and model calibration for Pf and Pv species. “Model Stage 2: Model Scenarios” section displays either the model’s prediction for a selected indicator or global prediction of elimination for all of the scenarios. The user can browse a map and a table on the predicted conservative intervention package to achieve malaria elimination by 2030. The last section, “Model Stage 3: Scenario Costing”, displays the cost per year of each scenario and of the predicted conservative intervention packages for achieving malaria elimination. Each of these 5 sections open with an “About” sub-section that provides the user with the basic knowledge required to understand the data provided in the section and an instructional video to guide the navigation of the section. In four of the five sections, the intended navigation is made explicit with the insertion of a picture representing the menu flow and highlighting what stage of development of the model the user is looking at (Figure 2).

The process of building the estimates is presented in a dedicated section, “Model Stage 1”, in order to show the extensive impact of the assumptions in subsequent model results. All time series graphs and most of the estimates (model predicted values, costs, years of elimination, etc.) are shown as a range of values (minimum, medium and maximum estimates) or with interquartile estimates.

Discussion
We created an App that provides users with convenient access to the results of modelling malaria elimination in the Asia-Pacific. The App is developed with open source technologies and could be updated with new models and adapted to other settings (e.g. other regions, new indicators). The App is
stable and easy to access through a web browser. Alongside the modelling results, we tried to show limitations related to uncertainty in the provided data and the nature of modelling. A more systematic analysis of user perceptions of the models could be achieved through observation techniques, task analysis, and other feedback methodologies. This would provide useful evidence for assessing which design Apps are better at communicating key messages and pitfalls.

All research in public health is done with the objective that the knowledge gained will somehow be used to improve health outcomes, and knowledge dissemination is recognised as an important component of the research process. The publication of scientific results in peer-reviewed journals is the unavoidable metric that dominates most researchers’ investment of resources in communicating their results. In order to make scientific articles more useful to policy makers, several journals have publication guidelines that request the inclusion of short sections to put research in context (e.g. Authors should state the implications for practice or policy of all research papers submitted to any journal in the Lancet family[21]). There is a wide range in the types of papers which have considerable use to informing policy[22] but there are also practical limits to the amount of data that can be included and conveniently communicated within a paper following the pervasive format of an academic publication. Even if most papers include figures or tables that support data visualisation, they are typically static and, by design, do not allow the reader to interactively explore them. The format of the academic publication is especially limiting to the field of modelling where the amount of data used, the degree of data uncertainty, the voluminous complexity and variability of results and the range of questions that practitioners may need to apply to test the assumptions of the model or explore dimensions of the results can be considerable. If summarising is essential, providing direct access to data is required in such circumstances. Perceptions of the nature, uses and quality criteria of mathematical modelling in epidemiology are contradictory, even among the community of published authors in this field[23]. The development of this discipline merits a framework for providing recommendations and guidance at various steps in the process, from design to reporting[24]. It is vital that researchers pursue improvements in how they prepare and report research for the end users. The ability to communicate data, findings, and reports in commonly used language will aid decision makers in using all available evidence and tools for decision-making[25].

The recent implementations of free, open-source extensions for the most popular software platforms for data science (e.g. R, Python) allow the development of graphical user interfaces and web apps within these platforms (e.g. Shiny package for R[26], Dash framework for Python[27]). The development of these extensions allows modellers to develop basic apps by themselves without requiring the support of expert software designers. We think that apps can offer a tremendous contribution by helping to build more relevant models for policymakers and supporting the communication of results. The design and development of dissemination tools concurrent with conducting modelling work means that policymaking questions are integrated in the early stages of model development and encourages considering and designing around what is most relevant to target audiences. An app can be provided alongside an article (as supplementary material) to be explored by the policy-maker on their own. Furthermore, this format of presentation could enhance the communication of concepts and data during interpersonal communications where the modeller, the policymaker and program level decision maker can interactively explore different options. The malaria ERAdication (malaria) group—the authoritative consultative group on modelling for malaria—has identified the development of interactive apps for models as a priority area for research in statistical modelling[28].

In order to promote the use of models more effectively, modellers must understand the needs of policymakers and be able to explain how modelling can support the decision-making process. Modellers must also be able to inform various audiences of the uncertainty of a model’s results, explain why a complex model is not necessarily superior to a simpler model, and generally help users navigate the added values and limitations of particular models. In addition to the generally challenging nature of communicating the models that we describe here, the sophistication of the METCAP model, the structural uncertainty of the underlying surveillance data and the high stakes of related decision-making (deciding between costly strategies), add a new dimension to the challenges in communication. We designed and developed the App with the goal of offering convenient access for an audience that might not otherwise have the time, resources or inclination to explore the METCAP project data and modelled results. Producing a cohesive, effective interface for an app is not a trivial task. To develop apps that are highly effective and have the maximum contribution to evidence-based policy-making, it is important to understand what factors have the potential to maximise an app utility and usefulness for end-users. We could not find any general guidance related to the design, development or dissemination of apps for public health. The rapid pace of development of technologies may explain why research is nascent in this area. Insights into the process of dissemination of apps are also of importance since they are relatively new in the field of public health and are thus not yet widely used, thus their adoption can be analysed through existing diffusion of innovations frameworks[29]. Several techniques could be used to evaluate apps UI such as heuristic evaluation,
In the field of mathematical models, usability testing, guidelines or cognitive walkthroughs\(^2^9\). Since apps have a critical impact on the process-oriented aspects of decision-making, a combination of both outcome- and process-oriented evaluation measures is highly important for apps evaluation\(^3^1\). This is another area where research could be developed to help better understand what evaluation measures are the most relevant and could be applied.

Apps may be misleading through being excessively complex, poorly constructed, or not providing sufficient background information. This also strongly motivates a systematic evaluation of their potential use.

Conclusions

An interactive app for the exploration of mathematical models is an effective dissemination tool and may help to bridge the gap between evidence generation through modelling and policymaking. These are not intended to replace but rather to accompany peer-reviewed publications and to present scientific findings more effectively to policymakers. We have demonstrated that it is possible to develop an app that provides a substantial amount of data from the model in formats more accessible and useful to the typical decision maker. At every stage in the METCAP App’s development, the diverse audience of users was prioritised. We emphasize that with additional user research, we could develop more effective apps and encourage a multidisciplinary effort to a more systematic use of mathematical models.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Software availability

Software available from: www.metcapmodel.net.

Source code available at: https://github.com/ocelhay/METCAP/.

Archived source code at time of publication: https://doi.org/10.5281/zenodo.2437908.

License: GNU General Public License, version 3.

Grant information

This work was supported by the Wellcome Trust Major Overseas Programme in SE Asia (106698). OJC was supported by the Bill and Melinda Gates Foundation (OPP1110500). SS was funded by a grant from the Asian Development Bank and the Bill and Melinda Gates Foundation (BMGF) (OPP1089413). RJM and CEM were funded by the Bill and Melinda Gates Foundation (OPP1110500), Asian Development Bank (TA-8763 and TA-8656), Australian Department of Foreign Affairs and Trade (71215) and the Wellcome Trust Major Overseas Programme in SE Asia (106698/Z/14/Z). RS was funded by a grant from the Asian Development Bank and the Bill and Melinda Gates Foundation (OPP1089413). LJW was supported by the Bill and Melinda Gates Foundation (OPP1110500) and the Wellcome Trust Major Overseas Programme in SE Asia (106698).

The authors were not paid to write this manuscript.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

2. APLMA Roadmap. [Reference Source](https://www.aplma.org/about-aplma/roadmap)

4. WHO World Malaria Reports. [Reference Source](https://www.malariaatlas.org/)

6. NOAA Earth System Research Laboratory: *El Niño Southern Oscillation (ENSO).* [Reference Source](https://www.esrl.noaa.gov/psd/enso/)

23. The Lancet Information for Authors. Reference Source

26. Dash, an Open Source Python library for creating reactive, Web-based applications. Reference Source

