RESEARCH NOTE

Ophthalmic signs in Ugandan adults with HIV-associated cryptococcal meningitis: A nested analysis of the ASTRO-CM cohort [version 1; referees: 1 approved]

Rachel R Atherton, Jayne Ellis, Fiona V Cresswell, Joshua Rhein, David R Boulware

1Institute of Infectious Diseases, Kampala, Uganda
2Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
3University of Minnesota, Minneapolis, MN, USA

* Equal contributors

Abstract
Cryptococcal meningitis is a leading cause of morbidity and mortality among HIV-infected persons, accounting for 15% of AIDS-related deaths. Visual disturbance is commonly reported, and a wide range of ophthalmic signs may be present on examination. There is limited published literature to date describing the range and incidence of ophthalmic signs in HIV-associated cryptococcal meningitis. Nested within the Adjunctive Sertraline for the Treatment of HIV-Associated Cryptococcal Meningitis (ASTRO-CM) trial (ClinicalTrials.gov number: NCT01802385), we conducted an observational study of 696 Ugandan adults with HIV-associated cryptococcal meningitis. Patients were screened for visual disturbance and ophthalmic signs at initial presentation and at follow-up appointments over 18 weeks. Assessment comprised simple clinical history and basic examination and required no specialist equipment.

More than a quarter of our cohort demonstrated ocular signs or symptoms, which were observed throughout the study period. A broad range of ocular signs were demonstrated: these included neurological signs (10.9%), localized ocular pathology (4.5%), and evidence of concurrent systemic disease (12.9%).

The range of signs observed demonstrates the complexities of case management in patients with advanced HIV and cryptococcosis and also the importance of basic ocular examination in low resource settings.

There remains an urgent need for studies conducting comprehensive ocular examination in patients with HIV-associated cryptococcal meningitis; these studies should include formal assessment of visual acuity, slit lamp examination and dilated indirect ophthalmoscopy. Prospective studies should investigate whether there is a correlation between reported visual disturbance and objective signs, in order to further clarify the underlying mechanisms and to guide effective diagnosis, follow-up and management.

Keywords
Cryptococcus, cryptococcal meningitis, HIV, visual, ocular, ophthalmic

Open Peer Review

Referee Status: ✔ Invited Referees 1

version 1 published 27 Jun 2018

1 Mosepele Mosepele, Botswana Harvard AIDS Institute Partnership (BHP), Botswana University of Botswana, Botswana

Discuss this article

Comments (0)
Corresponding author: Rachel R Atherton (rachelatherton@doctors.org.uk)

Author roles: Atherton RR: Formal Analysis, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Ellis J: Conceptualization, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Cresswell FV: Conceptualization, Writing – Review & Editing; Rhein J: Conceptualization, Writing – Review & Editing; Boulware DR: Conceptualization, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This research was supported by the Wellcome Trust [210772/Z/18/Z] to FVC and through the Joint Global Health Trials scheme jointly funded by the UK Medical Research Council, UK Department for International Development and the Wellcome Trust [M007413/1]. This work was also funded by the National Institute of Neurologic Disorders and Stroke and Fogarty International Center [R01NS086312, R2STW009345], and the National Institute of Allergy and Infectious Diseases [T32AI055433]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Atherton RR et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background
Cryptococcal meningitis is the commonest neurological complication in patients with advanced HIV, accounting for 15% of AIDS-related deaths1. Visual disturbance is a frequent presenting symptom including reduced visual acuity, blurred vision, diplopia and photophobia. In a South African study of patients with HIV-associated meningitis due to Cryptococcus neoformans, 47% (40/86) had decreased visual acuity2. Visual loss may occur secondary to raised intracranial pressure or be due to direct fungal invasion of the optic nerve, optic chiasm or optic tracts3,4.

Papilledema is reported to be the most common ophthalmic sign in cryptococcal meningitis, prevalence ranging between 33% and 48%5-7 in case series. Other ophthalmic signs described in case reports include: retinal haemorrhages8, multi-focal choroiditis9, optic atrophy10, vascular tortuosity11, exudative retinal detachment12 and intraocular cryptococcomas13. Ophthalmic signs in patients with cryptococcal meningitis may be indicative of neurological dysfunction including cranial nerve palsies14,15 or may reflect concurrent systemic disease in patients with advanced HIV.

We conducted an observational study of HIV-infected adults with acute cryptococcal meningitis to describe the range and relative incidence of ophthalmic signs.

Methods
The study was nested within the Adjunctive Sertraline for the Treatment of HIV-Associated Cryptococcal Meningitis (ASTRO-CM) trial (ClinicalTrials.gov number: NCT01802385). ASTRO-CM was a phase III randomized controlled trial to evaluate whether adjunctive sertraline improved survival when added to standard amphotericin-based therapy for cryptococcal meningitis. Primary outcome was 18-week survival. We enrolled HIV-infected adults (≥18 years) presenting with cryptococcal meningitis (diagnosed by cerebrospinal fluid (CSF) cryptococcal antigen positivity) to Mulago National Referral Hospital, Kampala or Mbarara Regional Referral Hospital, Uganda between August 2013 and May 2017. Patients were required to be willing to undergo protocol-specified lumbar punctures; and were excluded if they had already received 3 doses of amphotericin B, if they had jaundice or known liver cirrhosis, or were pregnant or currently breastfeeding. Patients were hospitalized for 2 weeks and thereafter seen every 2 weeks as outpatients through 18 weeks.

Standard clinical and examination data were collected as part of the randomized controlled trial. We screened participants for visual disturbance and ophthalmic signs at baseline and at each follow-up appointment, via clinical history and examination with a simple light source such as a pen torch. Incident ophthalmic symptoms and signs were ascribed by the attending study physician when first observed based on standard clinical case definitions (abnormal signs which persisted were not re-recorded at each follow-up visit).

Analysis was primarily descriptive and was performed using Microsoft Excel® 2016. We summarized the observational data as proportions or medians with inter-quartile ranges (IQR). For the descriptive analysis, we categorized ophthalmic abnormalities into three groups: (i) neurological signs (ii) localized ocular pathology (iii) evidence of concurrent systemic disease.

Results
We screened 696 adults with HIV-associated cryptococcal meningitis for visual disturbance and ophthalmic signs. 87.2% of patients presented as a first episode of cryptococcal meningitis, with the remaining 12.8% having had a previous episode. The mean age was 36 years (range 18–70 years), and 60% (421/696) were men. All patients had advanced HIV with a median CD4 count 16 cells/mm³ (IQR 6 - 49) and mean hemoglobin of 11.6 g/dL. Diagnostic lumbar punctures were undertaken on all patients and revealed a median opening pressure of 270 mmHg (IQR 180 – 410), and a median CSF fungal burden of 38,000 cfu/ml (IQR 790 – 236,750).

Overall, 184 participants (26.4%) displayed ophthalmic signs or symptoms during the study period, with a total of 227 abnormal findings documented (Table 1). Thirty-eight participants (5.5%) displayed more than one sign or symptom, either concurrently or sequentially (median 2; range 2–4). Ophthalmic signs were diagnosed throughout the study period: at initial assessment (n=80; 11.5%); during inpatient consultation (n=92; 13.2%); and during outpatient consultation (n=65; 9.3%).

Ninety participants (12.9%) displayed ophthalmic manifestations of systemic disease, with conjunctival pallor the most frequently reported sign (n=48; 6.9%). Thirty-six patients (9.1%) had ocular signs or symptoms, the most common being ‘reported visual disturbance’ (n=32; 4.6%) – a disparate category which grouped all subjective visual deficit in the absence of other objective signs. Conjunctivitis was also frequently noted on examination (n=22; 3.2%). Cranial nerve palsies (III, IV, VI or VII) occurred in 49 patients (7.0%), with the most common being a unilateral VI palsy (n=17; 2.4%). Other neurological symptoms were less commonly seen and included conjugate gaze palsy (n=6), nystagmus (n=2) and bilateral miosis (n=1).

Conclusions
Ophthalmic signs and symptoms were present in more than a quarter of our cohort of Ugandan adults with HIV-associated cryptococcal meningitis, consistent with previous literature reporting ophthalmic findings to be common in this population5,12,16,17. The complexity of this patient group is demonstrated in the breadth of signs present, both those indicative of systemic disease and those representing concurrent ocular and neurological pathology.

Abnormal examination findings were diagnosed throughout the study period and were equally incident across initial examination, inpatient and outpatient assessment; it is therefore essential that a high clinical vigilance is maintained at every stage of management in these patients.

All reported signs and symptoms were elicited through basic clinical history and examination, requiring only a simple light source such as a pen torch. This demonstrates the potential for
Table 1. Frequency of ophthalmic signs and symptoms in Ugandan adults with HIV-associated cryptococcal meningitis. I) Initial assessment (baseline); II) During inpatient stay; III) During subsequent outpatient consultations. Results displayed as raw data and as a percentage of the total study population (N=696). *Reported Visual Disturbance represents the only patient-reported variable; otherwise signs are reported as judged by the clinician. aNot otherwise specified.

<table>
<thead>
<tr>
<th>Sign or Symptom (N=696)</th>
<th>Baseline n (%)</th>
<th>Inpatient n (%)</th>
<th>Outpatient n (%)</th>
<th>Total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Ophthalmic Sign or Symptom</td>
<td>80 (11.5)</td>
<td>92 (13.2)</td>
<td>65 (9.3)</td>
<td>184 (26.4)</td>
</tr>
<tr>
<td>Systemic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pallor/Anaemia</td>
<td>12 (1.7)</td>
<td>21 (3.0)</td>
<td>15 (2.2)</td>
<td>48 (6.9)</td>
</tr>
<tr>
<td>Jaundice/Icterus</td>
<td>2 (0.3)</td>
<td>16 (2.3)</td>
<td>2 (0.3)</td>
<td>20 (2.9)</td>
</tr>
<tr>
<td>Dehydration/Sunken Eyes</td>
<td>1 (0.1)</td>
<td>3 (0.4)</td>
<td>3 (0.4)</td>
<td>7 (1.0)</td>
</tr>
<tr>
<td>Periorbital Oedema</td>
<td>4 (0.6)</td>
<td>3 (0.4)</td>
<td>0 (0.0)</td>
<td>7 (1.0)</td>
</tr>
<tr>
<td>Abnormal Periorbital Skin</td>
<td>4 (0.6)</td>
<td>4 (0.6)</td>
<td>0 (0.0)</td>
<td>8 (1.1)</td>
</tr>
<tr>
<td>Total</td>
<td>23 (3.3)</td>
<td>47 (6.8)</td>
<td>20 (2.9)</td>
<td>90 (12.9)</td>
</tr>
<tr>
<td>Ocular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported Visual Disturbance a</td>
<td>14 (2.0)</td>
<td>10 (1.4)</td>
<td>8 (1.1)</td>
<td>32 (4.6)</td>
</tr>
<tr>
<td>Conjunctivitis/Redness</td>
<td>6 (0.9)</td>
<td>3 (0.4)</td>
<td>13 (1.9)</td>
<td>22 (3.2)</td>
</tr>
<tr>
<td>Conjunctival Haemorrhage</td>
<td>1 (0.1)</td>
<td>3 (0.4)</td>
<td>1 (0.1)</td>
<td>5 (0.7)</td>
</tr>
<tr>
<td>Exophthalmos/Proptosis</td>
<td>3 (0.4)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>Cataract</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Total</td>
<td>24 (3.4)</td>
<td>17 (2.4)</td>
<td>22 (3.2)</td>
<td>63 (9.1)</td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal Pupillary Light Reflex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>5 (0.7)</td>
<td>2 (0.3)</td>
<td>2 (0.3)</td>
<td>9 (1.3)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>2 (0.3)</td>
<td>5 (0.7)</td>
<td>2 (0.3)</td>
<td>9 (1.3)</td>
</tr>
<tr>
<td>III Palsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>5 (0.7)</td>
<td>2 (0.3)</td>
<td>2 (0.3)</td>
<td>9 (1.3)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>IV Palsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>2 (0.3)</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>VI Palsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>12 (1.7)</td>
<td>4 (0.6)</td>
<td>1 (0.1)</td>
<td>17 (2.4)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>1 (0.1)</td>
<td>2 (0.3)</td>
<td>1 (0.1)</td>
<td>4 (0.6)</td>
</tr>
<tr>
<td>VII Palsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>0 (0.0)</td>
<td>2 (0.3)</td>
<td>1 (0.1)</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Squint/CN Palsy NOS a</td>
<td>7 (1.0)</td>
<td>2 (0.3)</td>
<td>3 (0.4)</td>
<td>12 (1.7)</td>
</tr>
<tr>
<td>Conjugate Gaze Palsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>1 (0.1)</td>
<td>2 (0.3)</td>
<td>2 (0.3)</td>
<td>5 (0.7)</td>
</tr>
<tr>
<td>Vertical</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Nyctagmus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Vertical</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Bilateral Miosis</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Total</td>
<td>36 (5.2)</td>
<td>23 (3.3)</td>
<td>17 (2.4)</td>
<td>76 (10.9)</td>
</tr>
</tbody>
</table>
identifying a large spectrum of systemic, ocular and neurological disease even in a low-resource setting. The absence of equipment such as Snellen charts in our study may partly explain the low incidence of reported visual disturbance in our population (4.6%), when compared to previously published case series.\(^\text{2,16,17}\)

Of note, signs of systemic disease such as conjunctival pallor (6.9%) and scleral icterus (2.9%) were particularly incident in our population. Anaemia is a common feature of advanced HIV disease and a side-effect of amphotericin B-based induction therapy, with increased mortality in patients with anaemia at baseline.\(^\text{18}\) Hepatotoxicity is less common, but also well-described for both amphotericin B and fluconazole, as well as several commonly-used antiretroviral (ARV) drugs such as nevirapine and efavirenz. Jaundice may signal concomitant infection with chronic hepatitis C virus (HCV) or hepatitis B virus (HBV), as well as other opportunistic infections such as cytomegalovirus (CMV) and tuberculosis (TB). Simple ophthalmic examination can provide a mechanism for identifying these potentially complicating issues - both prior to and during anti-fungal treatment - and prompt further investigation.

Our data afford several advantages compared to previous case series. Firstly, the size of our study population (N=696) is considerably larger than those previously examined, allowing for a more comprehensive description of signs and symptoms and their relative incidence. Secondly, we assessed patients regularly across a range of time-points. Systematic screening at baseline allowed for identification of early ophthalmic signs, with prolonged (18-week) follow-up ensuring late manifestations were also captured. Finally, the simplicity of clinical examination allowed a wide range of presentation severities to be assessed, in contrast to previous studies limited to co-operative patients able to consent to comprehensive ophthalmological assessments.\(^\text{19}\)

However, we recognise several limitations to our study. Firstly, although visual disturbances were systematically screened for, due to the nested nature of the study formal visual acuity testing was not performed, and therefore it is likely that we underestimated the proportion of patients with objective visual disturbance. Secondly, neither slit lamp examination nor indirect ophthalmoscopy was performed and therefore we are unable to comprehensively report on the prevalence of asymptomatic anterior chamber or retinal pathology in our cohort. Thirdly, in most cases, no attempt was made to establish aetiology of reported visual disturbance. The use of dilated indirect ophthalmoscopy in conjunction with intracranial pressure measurement and imaging, would have aided in dividing ocular from neurological pathology. Mechanisms for visual loss have been discussed elsewhere.\(^\text{2,19}\) Finally, our study was underpowered to detect an association between visual disturbance, cryptococcal disease severity and outcome.

Currently, limited published data exist describing ophthalmic features observed in HIV-associated cryptococcal cohorts. Prospective study – including routine slit lamp and indirect ophthalmoscopic examination - is urgently required into the correlation of reported visual disturbance with objective signs, in order to further clarify the underlying mechanisms and to guide effective diagnosis, follow-up and management.

Consent

Ugandan (MREC 429) and Minnesota (1304M31361) Institutional Review Boards approved the ASTRO-CM trial protocol. All participants (or a surrogate, should the former demonstrate altered mental status or otherwise lack capacity) provided written informed consent.

Data availability

The database contains individual level data and as such is not available through an open-access data repository. The database is stored on a secure server at University of Minnesota. Researchers interested in accessing the data can contact the corresponding author (RRA; rachelatherton@doctors.org.uk), the last author (DRB; boulw001@umn.edu) or the Division of Biostatistics at the University of Minnesota (sph-ask@umn.edu).

Data access will be granted to active researchers in the field with the agreement of the authors.

Competing interests

All authors declare they have no competing interests.

Grant information

This research was supported by the Wellcome Trust [210772/Z/18/Z] to FVC and through the Joint Global Health Trials scheme jointly funded by the UK Medical Research Council, UK Department for International Development and the Wellcome Trust [M007413/1].

This work was also funded by the National Institute of Neurologic Disorders and Stroke and Fogarty International Center [R01NS086312, R25TW009345], and the National Institute of Allergy and Infectious Diseases [T32AI055433].

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

Open Peer Review

Current Referee Status: ✔️

Version 1

Referee Report 02 July 2018
doi:10.21956/wellcomeopenres.15968.r33421

Mosepele Mosepele 1,2
1 Botswana Harvard AIDS Institute Partnership (BHP), Gaborone, Botswana
2 Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana

Study question, setting & population, study measures, data analysis, data reporting & interpretation are clearly stated. In this ophthalmic complications study nested within a CM trial, the investigators described ophthalmic complications among 696 HIV-CM adults in Uganda. At any point in time (at admission, during admission, post-discharge), rate of ophthalmic complications ranged between 9 and 13%. Clinically significant findings such as subjective decrease in visual acuity were however, uncommon.

Suggestions for data reporting:
1. Would have been useful to "trend" out the TYPE(S) of ophthalmic complications over time (even though the total frequencies were similar throughout follow-up). For instance, give baseline median haemoglobin of 11g/dl, the reported 48 participants may indicate complications of Amphotericin (late in course of treatment) vs at presentation. A figure or bar chart or some other graphical representation of major findings at each setting: at admission vs during admission vs post-discharge may be informative re the type of further care/evaluation that could be recommended for patients (systemic disease will be for the treating clinician) while ocular/neuro symptoms may indicate need for eye clinic referral.

2. In this setting, proportion of patients started on Ethambutol (or even anti-tuberculous therapy) containing antimicrobial therapy should be reported if available - or these limitation discussed as Ethambutol may cause decrease in visual acuity.

Conclusions:
1. Neurologic complications seem very low. Discussing the trial effect, e.g., intensive CSF drainage vs opening pressure monitoring as per standard of care, should be discussed.

2. Evaluation of other conditions that may results in ophthalmic conditions such as Diabetes, etc were not evaluated. This should be discussed in the study limitations section.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes
Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: HIV in resource limited setting, including both infectious and non-infectious complications

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.