RESEARCH NOTE

‘Read–through marking’ reveals differential nucleotide composition of read-through and truncated cDNAs in iCLIP
[version 1; referees: 1 approved]

Ina Huppertz1,2*, Nejc Haberman1,3*, Jernej Ule1,4

1 Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
2 European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
3 MRC London Institute of Medical Sciences, London, W12 0NN, UK
4 The Francis Crick Institute, London, NW1 1AT, UK

* Equal contributors

Abstract
We established a modified iCLIP protocol, called ‘read-through marking’, which facilitates the detection of cDNAs that have not been truncated upon encountering the RNA–peptide complex during reverse transcription (read-through cDNAs). A large proportion of these cDNAs would be undesirable in an iCLIP library, as it could affect the resolution of the method. To this end, we added an oligonucleotide to the 5’-end of RNA fragments—a 5’-marker—to mark the read-through cDNAs. By applying this modified iCLIP protocol to PTBP1 and eIF4A3, we found that the start sites of read-through cDNAs are enriched in adenosines, while the remaining cDNAs have a markedly different sequence content at their starts, preferentially containing thymidines. This finding in turn indicates that most of the reads in our iCLIP libraries are a product of truncation with valuable information regarding the proteins’ RNA-binding sites. Thus, cDNA start sites confidently identify a protein’s RNA-crosslink sites and we can account for the impact of read-through cDNAs by commonly adding a 5’-marker.

Keywords
Protein–RNA interactions, iCLIP, High-throughput sequencing, Polypyrimidine tract binding protein 1 (PTBP1), Eukaryotic initiation factor 4A-III (eIF4A3)

Open Peer Review

Referee Status: ✅

Invited Referees
1

version 1
published
22 Jun 2018

Report

Sander Granneman, University of Edinburgh, UK

Discuss this article

Comments (0)

This article is included in the The Francis Crick Institute gateway.
Introduction
As part of the individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) protocol, crosslinked protein–RNA complexes are immunopurified and the RNA fragments are released by protein digestion, resulting in RNAs with a covalently bound peptide at the crosslink site (König et al., 2010; Lee & Ule, 2018). This is followed by reverse transcription, where in theory the RNA–peptide complex leads to the premature termination of cDNA synthesis and is thus indicative of a protein’s binding site. However, iCLIP libraries most likely contain a mixed population of cDNAs. The position of the crosslinked peptide can cause a premature termination of cDNAs (truncated cDNAs), and computational analyses indicated that truncated cDNAs represent 80–95% of cDNAs in the analysed iCLIP libraries (Figure 1a) (Sugimoto et al., 2012). However, for the remaining cDNAs, truncation will not take place (read-through cDNAs) and thus their sequence will encompass a full RNA fragment up to the point of RNase cleavage.

In iCLIP, the start of the truncated cDNAs should be equivalent to the position of the crosslink sites. This also applies to related techniques that rely on analysis of truncated cDNAs, including among others the FAST-iCLIP, CITS-CLIP, BrdU-CLIP, irCLIP, eCLIP and miCLIP, as reviewed recently (Lee & Ule, 2018). Using these start positions for the RNA-binding–site assignment provides high-resolution RNA-binding information (Haberman et al., 2017). However, understanding the characteristics of read-through cDNAs in iCLIP is essential, since their presence could erroneously shift the boundaries of predicted RNA-binding sites to positions upstream of their true binding sites.

Methods
Read–through marking protocol
The modified iCLIP protocol is based on the previously described protocol with modifications that enable the definition of read–through cDNAs (Huppertz et al., 2014). HEK293 cells were crosslinked with 0.15 mJ/cm² 254 nm UV light. The cell lystate was prepared and the immunoprecipitation performed as previously described (Haberman et al., 2017). The mouse monoclonal BB7 serum anti-PTBP1 (a gift from C. Smith, available from ATCC, catalogue number CRL-2501) was used for all PTBP1 immunoprecipitations. After the first round of washes, the samples proceeded through 3’-adapter addition, an additional phosphorylation (0.2 µl PNK, 0.4 µl cold ATP (1 mM), 0.4 µl 10x PNK buffer, 3 µl water) and a 5’-marker ligation (6 µl water, 5 µl 4X ligation buffer, 2 µl RNA ligase, 1 µl RNasin, 2 µl 5’-marker (100 µM), 4 µl PEG400). The sequence of the 5’-marker is CAGUCCGACGAUC, which corresponds to the Illumina short RNA 5’-Adapter (RA5), part #15013205; this sequence is not present in iCLIP cDNA libraries (Huppertz et al., 2014).

Mapping and computational analysis of iCLIP data
The scripts used for the analyses in this paper are available in a fully documented format at the GitHub repository (https://github.com/jernejule/non-coinciding_cDNA_starts).

Before mapping the cDNAs, we converted the FASTQ sequences into two FASTA format groups, based on presence of the sequence of the 5’-marker, CAGUCCGACGAUC, at the start of the read. Reads containing the 5’-marker sequence were marked as ‘read-through’ group. The 5’-marker sequence was then removed from further analysis and processed with the same pipeline as the remaining group of reads. To map the PTBP1 data to the genome, we used the UCSC hg19/GRCh37 genome assembly, and to map the eIF4A3 data to the transcriptome, we compiled a set of representative mRNA sequences from BioMart Ensembl Genes 79, for which we used the longest mRNA sequence available for each gene. We mapped both eIF4A3 and PTBP1 with the Bowtie2 version 2.1 alignment software, allowing two mismatches, analysed as previously described (Haberman et al., 2017).

Unique molecular identifiers (UMIs) were used to remove cDNAs that are a product of PCR amplification (Haberman et al., 2017). Thus, we quantified the number of unique cDNAs for the PTBP1 (EMBL-EBI accession number, E-MTAB-6927) and the pre-existing eIF4A3 dataset (EMBL-EBI accession number, E-MTAB-3618) after collapsing cDNAs with the same UMI and the same starting position to a single cDNA.

Prior to mapping the iCLIP data, we removed the UMIs and trimmed the 3'-Solexa adapter sequence using the FASTX-Toolkit 0.0.13 adapter removal software. For both the PTBP1 and the eIF4A3 iCLIP datasets, the cDNAs were mapped, and the Weblogo of sequence composition of genomic sequence around their starts was analysed as previously described (Haberman et al., 2017).

Results
To examine the characteristics of read-through cDNAs that are present in iCLIP cDNA libraries, we introduced an additional RNA ligation reaction that adds an oligonucleotide to the 5’-end of the RNA fragments (5’-marker; Figure 1a, step 3b). Subsequently, only the read-through cDNAs contain the sequence of the new 5’-marker (Figure 1a, step 8). This read-through marking protocol differs from the traditional CLIP protocol, which ligates the 5’-adapter to the RNA fragments (Ule et al., 2005). In CLIP, the 5’-adapter contains a sequence that is complementary to the 5’-PCR primer, and therefore only read-through cDNAs that contain this 5’-adapter are amplified. Here, the 5’-marker is not complementary to any PCR primer and is thus not required for amplification of the cDNAs but instead becomes part of the sequenced read.

Using this modified iCLIP protocol, we produced datasets for PTBP1 and eIF4A3 (Supplementary Figure 1). In the PTBP1 iCLIP dataset, 3.4% of the resulting reads contained the 5’-marker at their start site, while this was only the case for 0.2% of the reads for eIF4A3 (Figure 1b, d). For the 5’-marker-containing reads, we can be confident that they are a product of read-through reverse transcription. The nucleotide composition at the start sites of these read-through cDNAs is strikingly different from the remaining cDNAs (Figure 1c, e). The read-through cDNAs most often contain adenosine as their first nucleotide (Figure 1c, e, at position 1), while the remaining cDNAs show an enrichment of thymines (Figure 1b, d, at position 1). Since the efficiency of the 5’-marker ligation is unknown, some read-through cDNAs are likely to be present in the remaining pool of cDNAs. However, the strikingly different nucleotide composition at the starts of the remaining cDNAs indicates that truncated cDNAs strongly predominate this pool.
A modified iCLIP protocol identifies ‘read-through cDNAs’. (a) A schematic description of the modified iCLIP protocol. Before lysis, cells or tissues are irradiated with ultraviolet (UV) light, which creates a covalent bond between proteins and RNAs that are in direct contact (step 1). After lysis, the crosslinked RNA is fragmented by a limited concentration of RNase I, and the RNA fragments are then co-immunoprecipitated with the RBP (step 2). Ligation of a 3'-adapter (step 3a) is followed by ligation of a 5'-marker that is unique to the modified protocol (red balloon, step 3b). After SDS-PAGE purification (step 4), the crosslinked RBP is removed through proteinase K digestion and purification of RNA fragments; since the ligation reaction is not 100% efficient, only a subset of the fragments contains both the 3'-adapter and the 5'-marker (step 5). Reverse transcription is performed with a primer that includes a barcode (orange) containing both an experimental identifier and a unique molecular identifier (UMI) (step 6). The peptide that remains at the crosslink site impairs reverse transcription and commonly leads to truncation of cDNAs at the crosslink site. Therefore, two types of cDNAs are generated: truncated cDNAs (which never contain the 5'-marker) and read-through cDNAs (some of which contain the 5'-marker). In iCLIP, the cDNA library is prepared so that both truncated and read-through cDNAs are amplified (step 7). After PCR amplification and sequencing (step 8), the 5'-marker sequence is present only at the beginning of read-through cDNAs. (b–e) The composition of genomic nucleotides around iCLIP cDNA-starts that were generated using the modified iCLIP protocol; 3.4% of the mapped PTBP1 iCLIP cDNAs (b) and 0.2% of the mapped eIF4A3 iCLIP cDNAs (d) contained a 5'-marker (read-through cDNAs), while 96.6% of the mapped PTBP1 iCLIP cDNAs (c) and 99.8% of the mapped eIF4A3 iCLIP cDNAs (e) lacked the 5'-marker sequence.
Given that the start sites of read-through cDNAs mark the position of RNase I cleavage, it is likely that the enrichment of adenosines at this position reflects the sequence preference of RNase I, which resembles the one seen for RNase cleavage sites at the ends of cDNAs (Haberman et al., 2017). By contrast, the uridine preference at the start sites of the remaining cDNAs might reflect the preference of UV-C crosslinking at uridines, as well as the binding preference of the studied RNA-binding proteins, especially PTBP1, which is known to bind U-rich motifs (Haberman et al., 2017; Sugimoto et al., 2012).

Conclusion

In conclusion, we established an iCLIP read-through marking approach, which ligates an additional 5’-marker to the purified RNA fragments, to examine the sequence characteristics at the start sites of read-through cDNAs as part of the iCLIP protocol. By comparing the sequence composition at the start sites of read-through cDNAs and the remaining cDNAs of CLIP libraries of selected proteins, one can more confidently define RNA-binding sites by excluding cDNAs with read-through bias at their start sites. The approach can be applied to any other method that relies on analysis of cDNAs that truncate at specific features within.

Data availability

The PTBP1 iCLIP newly generated for this manuscript, is available from ArrayExpress, accession number E-MTAB-6927: http://identifiers.org/arrayexpress/E-MTAB-6927.

Supplementary material

Supplementary Figure 1. Quality control of the PTBP1 iCLIP experiment. (a) Table summarising the number of cDNAs in all experiments used in this study. (b) Native acrylamide gel showing PTBP1 iCLIP PCR products that were amplified from medium (M) and high (H) cDNA size ranges. During cDNA library preparation for the modified PTBP1 iCLIP to detect ‘read-through cDNAs’, two size ranges of cDNAs were isolated from the denaturing acrylamide gel according to the recommended protocol, yielding cDNAs of approximately 90-190 nt. Since primer sequences add 52 nt to the cDNA size, sequences complementary to the iCLIP RNAs were approximately 40-140 nt. After amplification, 170-270 nt PCR products were obtained, including 128 nt of Illumina primer and iCLIP barcodes, corresponding to an approximate size range of mappable sequenced cDNAs of 40-140 nt (not shown).

Click here to access the data.

References

The eIF4A3 dataset produced by the read-through marking method, but published for the purpose of other analyses (Haberman et al., 2017), is available from ArrayExpress, accession number E-MTAB-3618: http://identifiers.org/arrayexpress/E-MTAB-3618.

Software availability

Source code available from: https://github.com/jernejule/non-coinciding_cDNA_starts.

License: Creative Commons Attribution 4.0.

Competing interests

No competing interests were disclosed.

Grant information

This work was supported by the Wellcome Trust (103760 to JU) and the European Research Council (617837-Translate to JU).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The authors thank all members of the Ule laboratory for their assistance and discussion, and Professor Chris Smith for sharing the PTBP1 antiserum.
Open Peer Review

Current Referee Status:

Version 1

Referee Report 28 June 2018

doi:10.21956/wellcomeopenres.15965.r33399

Sander Granneman
Institute of Structural and Molecular Biology, Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK

Here the authors describe an approach to quantify the degree of reverse transcriptase read-through during iCLIP cDNA library preparation. By ligating a specific oligonucleotide to the 5' ends of cross-linked RNAs, they can roughly quantify the degree of read-through and determine whether the sequence characteristics of the read-through fragments are similar to the truncated cDNAs. The approach used is clever and the paper is of a good quality. I do have a few suggestions that might improve the paper:

In the Methods section the authors mention what volume of PNK enzyme is used for the RNA ligation reactions but they do not specify units. I assume they are using NEB PNK (?) but this comes in various concentrations. I would appreciate it if the authors could also provide the number of units of enzymes in the materials and methods.

One potential issue with the method is that it is not possible (or not easy) to determine whether all 5' ends of the cross-linked RNAs have actually been ligated to their adapter. I agree with the authors that the sequence analysis strongly indicate that the ligation reaction went to completion. Have the authors done any optimization steps for the ligation reaction? It might be worth mentioning that this step may need to be optimized for each protein as the amount of RNA cross-linked to a protein can vary quite significantly.

T4 PNK ligase also introduced sequence representation biases as the enzyme seems to have a preference for certain nucleotide combinations. Did the authors have test how well their adaptor ligates to RNAs with different nucleotides at 5' ends. Most groups now routinely add random nucleotides to adapter sequences to minimize such bias (you can never completely remove it). Have the authors considered doing this? Perhaps the authors could comment on this in the manuscript.

The authors have specifically looked at the 5' ends of the read-through fragments for motif analysis. These results suggest that most of the RNA sequences in read-through fragments have A’s at the 5' end, which is to be expected as the RNAs were fragmented with RNase I. I am wondering though if it would not be also interesting to look at mutations within these read-through fragments to assess whether (a) all read-through fragments have mutations, (b) whether these primarily are deletions or substitutions and whether they cluster together. I would also be interested to see if the motifs found at or near deletions/substitutions are similar to the ones identified in the truncated cDNAs. Essentially, these analyses could answer a long-standing question about how reliably mutations are for pin-pointing the UV cross-linking site. The reason for asking this is that we sometimes observe deletions in U-rich regions and it is not always evident whether these deletions are the result of over cross-linking the cells (RNA
it is not always evident whether these deletions are the result of over-cross-linking the cells (RNA damage) or whether these are actual UV-cross-linking sites.

Because the read-through fragments may have multiple mutations, they may not map accurately to the reference sequence. Can the authors comment on how many of the read-through reads did not or poorly align to the reference sequence?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Protein-RNA interactions, CRAC/CLIP, Next generation sequencing, RNA processing, RNA degradation

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 09 Jul 2018

Jernej Ule, The Francis Crick Institute, UK

We thank the reviewer for the excellent suggestions, and we will provide a complete response along with the revised manuscript once we receive further reviews. For now, I would just like to clarify that this method doesn't work under the assumption that 5' ends have been efficiently ligated to their adapter. In fact, more likely the opposite is true, since the 5' ends of CLIP RNAs can often be buried in the protein binding pocket, and can form RNA structures that make them inaccessible to PNK phosphorylation and ligation. Thus, we assume that the 5' ligation efficiency is probably below 50%. It would be difficult to increase it much further due to the variable accessibility of RNA fragments.

Importantly, high ligation efficiency is not needed for the analyses used in the manuscript, since we focus primarily on those reads that have the adapter - and here we can be confident that the ligation worked, so these certainly are readthrough cDNAs. The purpose of our method is to identify the sequence characteristics of the readthrough RNAs within a standard iCLIP experiment, which maximises the recovery of RNA fragments by amplifying them regardless of whether 5'
which maximises the recovery of RNA fragments by amplyfying them regardless of whether 5' marker has been ligated or not.

A more thorough response will follow later.

Competing Interests: No competing interests were disclosed.